| 注册
首页|期刊导航|计算机工程与应用|融合分类校正与样本扩增的小样本目标检测

融合分类校正与样本扩增的小样本目标检测

黄友文 豆恒 肖贵光

计算机工程与应用2024,Vol.60Issue(1):254-262,9.
计算机工程与应用2024,Vol.60Issue(1):254-262,9.DOI:10.3778/j.issn.1002-8331.2208-0245

融合分类校正与样本扩增的小样本目标检测

Few-Shot Object Detection Based on Fusion of Classification Correction and Sample Amplification

黄友文 1豆恒 1肖贵光1

作者信息

  • 1. 江西理工大学 信息工程学院,江西 赣州 341000
  • 折叠

摘要

Abstract

Existing few-shot object detection methods often have the problem of data distribution shift when amplifying samples,and the performance of classification tasks is easily affected by localization tasks.Aiming at the above problems,a new few-shot object detection algorithm is proposed based on the Faster R-CNN framework.The classification correc-tion module(CCB),sample amplification module(SAB),and gradient control layer(GCL)are introduced to improve performance.CCB uses an offline strong classification network to correct the final results of the detector.SAB uses the base class information to modify the distribution of the new class samples in the feature domain,so as to complete the am-plification of the new class samples by sampling from the modified distribution.In gradient backpropagation,the informa-tion of the base class and new class received by the backbone network are restricted by GCL.The experimental results on PASCAL VOC and COCO datasets show that,compared with the latest known algorithm results,the proposed few-shot object detection algorithm improves the detection effect when the number of samples is small.The maximum improve-ment can reach 5.1%on PASCAL VOC,a public dataset.It also reaches up to 1.9%improvement on the more difficult dataset COCO.Therefore,the proposed few-shot detection framework has good robustness and generalization ability at the same time.

关键词

小样本学习/目标检测/数据扩增/梯度限制

Key words

few-shot learning/object detection/data amplification/gradient control

分类

信息技术与安全科学

引用本文复制引用

黄友文,豆恒,肖贵光..融合分类校正与样本扩增的小样本目标检测[J].计算机工程与应用,2024,60(1):254-262,9.

基金项目

江西省教育厅科技项目(GJJ180443). (GJJ180443)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文