| 注册
首页|期刊导航|机械科学与技术|改进连续隐马尔可夫模型的有杆抽油故障诊断

改进连续隐马尔可夫模型的有杆抽油故障诊断

王东宇 刘宏昭 任慧

机械科学与技术2023,Vol.42Issue(12):1959-1966,8.
机械科学与技术2023,Vol.42Issue(12):1959-1966,8.DOI:10.13433/j.cnki.1003-8728.20220155

改进连续隐马尔可夫模型的有杆抽油故障诊断

Fault Diagnosis of Sucker Rod Pumping System Using Improved Continuous Hidden Markov Model

王东宇 1刘宏昭 2任慧3

作者信息

  • 1. 西安理工大学机械与精密仪器工程学院,西安 710048||中国石油集团测井有限公司测井技术研究院,西安 710077
  • 2. 西安理工大学机械与精密仪器工程学院,西安 710048
  • 3. 西安财经大学信息学院,西安 710100
  • 折叠

摘要

Abstract

When using artificial intelligence to diagnose the fault of sucker rod pumping system,dynamometer cards describing the working condition become the object of machine learning,and the main steps are to extract the feature of dynamometer card and build the diagnosis model.The existing geometric features based on valve working position cannot directly reflect the area of dynamometer card,so a group of improved training features are proposed,and the continuous hidden Markov model(CHMM)is used to establish the diagnosis model.In order to make the initialization of parameters more reliable,the K-means clustering algorithm associated with the Gaussian mixture model is used.The diagnosis method proposed in this paper is used to test the dynamometer card set of real oil wells,the results show that this method is effective,and the improved training features and modeling methods can enhance the accuracy of fault diagnosis

关键词

示功图/特征提取/连续隐马尔可夫模型/K-means聚类

Key words

dynamometer card/feature extraction/continuous hidden Markov model/K-means clustering

分类

能源科技

引用本文复制引用

王东宇,刘宏昭,任慧..改进连续隐马尔可夫模型的有杆抽油故障诊断[J].机械科学与技术,2023,42(12):1959-1966,8.

基金项目

国家自然科学基金项目(51275404)与陕西省"13115"重大科技专项(2009ZDKGG-33) (51275404)

机械科学与技术

OA北大核心CSCDCSTPCD

1003-8728

访问量0
|
下载量0
段落导航相关论文