| 注册
首页|期刊导航|机械科学与技术|一种改进CycleGAN的水下彩色图像增强方法

一种改进CycleGAN的水下彩色图像增强方法

刘朝 王红茹

机械科学与技术2023,Vol.42Issue(12):2093-2099,7.
机械科学与技术2023,Vol.42Issue(12):2093-2099,7.DOI:10.13433/j.cnki.1003-8728.20220162

一种改进CycleGAN的水下彩色图像增强方法

An Improved Underwater Color Image Enhancement Algorithm Based on CycleGAN

刘朝 1王红茹2

作者信息

  • 1. 江苏科技大学机械工程学院,江苏镇江 212003
  • 2. 江苏科技大学江苏省船海机械先进制造及工艺重点实验室,江苏镇江 212003
  • 折叠

摘要

Abstract

The underwater image enhancement based on the deep learning method considers only the RGB feature space,therefore the image enhancement effect is unsatisfactory.To cope with this problem,this paper proposed an improved underwater color image enhancement algorithm based on the cyclic generative adversarial network(CycleGAN).Both RGB and HSV color spaces of an image are used to train the CycleGAN.The features down-sampled from the CycleGAN are input into the residual network and the expansion compression module to extract useful features.The weights of RGB and HSV spaces are adaptively adjusted in the expansion and compression module.The pre-trained CycleGAN acts on the paired water degraded image and the enhanced image for weakly supervised training.The feature fusion network is adopted to fuse the output of the CycleGAN into three channels of a new RGB image.The experimental results show that the algorithm can effectively combine the feature information on both RGB and HSV spaces,improves the contrast and brightness of the underwater image and corrects its color deviation.

关键词

水下彩色图像增强/循环对抗生成网络/卷积层压缩扩展/颜色空间融合

Key words

underwater color image enhancement/cyclic generative adversarial network/convolution layer expansion and compression/color space fusion

分类

信息技术与安全科学

引用本文复制引用

刘朝,王红茹..一种改进CycleGAN的水下彩色图像增强方法[J].机械科学与技术,2023,42(12):2093-2099,7.

基金项目

国家重点研发计划项目(2018YFC0309100) (2018YFC0309100)

机械科学与技术

OA北大核心CSCDCSTPCD

1003-8728

访问量0
|
下载量0
段落导航相关论文