| 注册
首页|期刊导航|吉林农业大学学报|基于改进ConvNeXt网络的人参分级模型

基于改进ConvNeXt网络的人参分级模型

翟梦婷 张丽娟 朴欣茹 李伟 李东明

吉林农业大学学报2023,Vol.45Issue(6):791-802,12.
吉林农业大学学报2023,Vol.45Issue(6):791-802,12.DOI:10.13327/j.jjlau.2023.20259

基于改进ConvNeXt网络的人参分级模型

Ginseng Grading Model Based on Improved ConvNeXt Network

翟梦婷 1张丽娟 2朴欣茹 1李伟 3李东明4

作者信息

  • 1. 吉林农业大学信息技术学院,长春 130118
  • 2. 无锡学院物联网工程学院,无锡 214105
  • 3. 吉林农业大学中药材学院,长春 130118
  • 4. 吉林农业大学信息技术学院,长春 130118||无锡学院物联网工程学院,无锡 214105
  • 折叠

摘要

Abstract

In order to solve the problem of small feature variability among ginseng grading classes and heavy reliance on professionals,a ginseng data set containing 5 116 images with three classes in different contexts was established,and a ginseng grading model based on an improved ConvNeXt framework was proposed.Firstly,the channel shuffle module was embedded in the backbone network after down-sampling to fully fuse the channel features to improve the grading accuracy;secondly,the ConvNeXt Block module was optimized and improved,and the Re-parameterization module was fused with it to improve the characterization ability of the model,enrich the feature space of the con-volutional blocks,and further improve the model's accuracy;finally,the original activation function GELU was replaced by the PReLU activation function to increase the nonlinear variability of the neu-ral network model,which improved the model's accuracy and efficiency.The experimental results showed that the accuracy,precision,recall and specificity of ginseng classification reach 94.44%,91.58%,91.04%,and 95.82%,and the loss rate has been reduced to 0.24%,which proves the valid-ity of this study and can provide reference for ginseng quality classification.

关键词

ConvNeXt/人参分级/通道混洗/结构重参数化/激活函数/深度学习

Key words

ConvNeXt/ginseng grading/channel shuffle/structural reparameterization/activa-tion function/deep learning

分类

农业科技

引用本文复制引用

翟梦婷,张丽娟,朴欣茹,李伟,李东明..基于改进ConvNeXt网络的人参分级模型[J].吉林农业大学学报,2023,45(6):791-802,12.

基金项目

国家自然科学基金青年科学基金项目(61801439),吉林省重点研发项目(20210204050YY),吉林省教育厅项目(JJKH20210747KJ),吉林省环保厅项目(202107),吉林省中青年领军团队及创新人才支持计划项目(20200301037RQ) (61801439)

吉林农业大学学报

OA北大核心CSCDCSTPCD

1000-5684

访问量0
|
下载量0
段落导航相关论文