| 注册
首页|期刊导航|计算机工程|融合注意力与特征金字塔的小尺度目标检测算法

融合注意力与特征金字塔的小尺度目标检测算法

圣文顺 余熊峰 林佳燕 陈欣

计算机工程2024,Vol.50Issue(1):242-250,9.
计算机工程2024,Vol.50Issue(1):242-250,9.DOI:10.19678/j.issn.1000-3428.0066724

融合注意力与特征金字塔的小尺度目标检测算法

Small-Scale Object Detection Algorithm Integrating Attention and Feature Pyramids

圣文顺 1余熊峰 1林佳燕 1陈欣1

作者信息

  • 1. 南京工业大学浦江学院,江苏 南京 211200
  • 折叠

摘要

Abstract

A modified Faster R-CNN algorithm is proposed to address the problem of poor detection ability for small-scale objects and occluded or truncated objects,combining the CBAM mechanism and feature pyramid structure.To focus on the efficient use of local information in feature images,the CBAM mechanism is integrated into the feature extraction network to reduce the interference of invalid targets and improve the detection ability,notwithstanding occluded or truncated objects.This introduces a Feature Pyramid Network(FPN)structure to connect high-and low-level feature data,obtaining high-resolution and strong semantic data,thereby enhancing the detection effect of small objects.To alleviate the phenomenon of gradient vanishing and reduce the scale of hyperparameters,the commonly used VGG16 network is replaced with a strong expressive ability of the inverse residual VS-ResNet network.VS-ResNet modifies some hierarchical structures based on the original ResNet 50,adds auxiliary classifiers,designs inverse residual and group convolution methods,such that the activation function information is fully preserved in high-dimensional environments,and improves detection accuracy.The reset candidate box score calculation method is used to compensate for the defect of the Non-Maximum Suppression(NMS)algorithm in mistakenly eliminating overlapping detection boxes.The experimental results demonstrate that compared to VGG16,VS-ResNet has a 2.97 percentage points improvement in accuracy on the CIFAR-10 dataset.The target detection mAP value of the proposed algorithm on the Pascal VOC 2012 dataset is 76.2%,which is 13.9 percentage points higher than that of the original Faster R-CNN algorithm.

关键词

深度学习/注意力机制/特征金字塔/小目标检测/截断物体检测

Key words

deep learning/attention mechanism/feature pyramid/small object detection/truncated object detection

分类

信息技术与安全科学

引用本文复制引用

圣文顺,余熊峰,林佳燕,陈欣..融合注意力与特征金字塔的小尺度目标检测算法[J].计算机工程,2024,50(1):242-250,9.

基金项目

江苏省青蓝工程(苏教师函[2021]11号) (苏教师函[2021]11号)

国家自然科学基金(61571222) (61571222)

江苏省高校自然科学基金面上项目(19KJD520005). (19KJD520005)

计算机工程

OA北大核心CSTPCD

1000-3428

访问量7
|
下载量0
段落导航相关论文