| 注册
首页|期刊导航|空间控制技术与应用|基于自监督学习的动力设备异常检测方法

基于自监督学习的动力设备异常检测方法

乔怡群 王田 刘克新 王丽 吕坤 郭云翔

空间控制技术与应用2023,Vol.49Issue(6):86-93,8.
空间控制技术与应用2023,Vol.49Issue(6):86-93,8.DOI:10.3969/j.issn.1674-1579.2023.06.009

基于自监督学习的动力设备异常检测方法

Anomaly Detection Method for Power Equipment Based on Self-Supervised Learning

乔怡群 1王田 2刘克新 3王丽 4吕坤 4郭云翔4

作者信息

  • 1. 北京航空航天大学 自动化科学与电气工程学院,北京 100191
  • 2. 北京航空航天大学 自动化科学与电气工程学院,北京 100191||复杂关键软件环境国家重点实验室,北京 100191||中关村实验室,北京 100191
  • 3. 北京航空航天大学 自动化科学与电气工程学院,北京 100191||中关村实验室,北京 100191
  • 4. 武汉高德红外股份有限公司,武汉 430205
  • 折叠

摘要

Abstract

Efficient and accurate anomaly detection of power equipment is essential for aerospace safety.Scientific detection and maintenance can promptly identify potential faults and ensure the safety and reliability of the system.The data collected by sensors from power equipment contains valuable information.Feature extraction is usually re-quired for processing these data.Although deep learning methods historically obtain excellent results,there is al-ways a trade-off between fine-tuning existing networks or designing models from scratch for sensor data processing.To address this issue,we propose a temporal feature extraction network for time series data based on self-supervised learning.First,we use self-supervised learning methods to pre-train the network.Then we devise a novel network model structure that can effectively extract the representation of time series data.Finally,we evaluate the proposed method on relevant datasets,and the experimental results demonstrate the effectiveness of the proposed method.

关键词

动力设备/时序数据/自监督学习/异常检测

Key words

power equipment/anomaly detection/self-supervised learning/series data

分类

航空航天

引用本文复制引用

乔怡群,王田,刘克新,王丽,吕坤,郭云翔..基于自监督学习的动力设备异常检测方法[J].空间控制技术与应用,2023,49(6):86-93,8.

基金项目

国家自然科学基金资助项目(61972016、62032016和92067204)和北京市科技新星资助项目(20220484106和20230484451)Supported by National Natural Science Foundation of China(61972016,62032016 and 92067204)and Beijing Nova Program(20220484106,20230484451) (61972016、62032016和92067204)

空间控制技术与应用

OA北大核心CSCDCSTPCD

1674-1579

访问量0
|
下载量0
段落导航相关论文