| 注册

多策略改进的麻雀搜索算法

回立川 李瑶 李欢欢 于淼 王久阳

辽宁工程技术大学学报(自然科学版)2023,Vol.42Issue(6):722-732,11.
辽宁工程技术大学学报(自然科学版)2023,Vol.42Issue(6):722-732,11.DOI:10.11956/j.issn.1008-0562.2023.06.012

多策略改进的麻雀搜索算法

Multi-strategy improved sparrow search algorithm

回立川 1李瑶 1李欢欢 1于淼 2王久阳2

作者信息

  • 1. 辽宁工程技术大学 电气与控制工程学院,辽宁 葫芦岛 125105
  • 2. 国网辽宁省电力有限公司 葫芦岛供电公司,辽宁 葫芦岛 125000
  • 折叠

摘要

Abstract

Aiming at the problems that the sparrow search algorithm tends to fall into local optimization during iterative convergence,a multi-strategy improved sparrow search algorithm(NLSSA)is proposed.Firstly,the neighborhood center of gravity reverse learning strategy is used to optimize the initial population of the sparrow algorithm and improve the initial individual quality,and then,the long and short distance jump of the Levy flight strategy is used to update the sparrow producer position,thereby improving the local extremum escape ability of the sparrow algorithm,and finally,the adaptive weight is introduced in the follower position update mechanism,so as to balance the local mining and global optimization ability of the sparrow algorithm.In order to verify the performance of the proposed NLSSA algorithm,this paper uses eight benchmark functions to test,and the test results and the Wilcoxon symbolic rank test show that the NLSSA algorithm has higher search accuracy,stability performance and convergence speed than sparrow search algorithm,particle swarm algorithm,grey wolf optimizer and other improved sparrow search algorithms.

关键词

麻雀搜索算法/邻域重心反向学习/Levy飞行策略/自适应权重/基准函数

Key words

sparrow search algorithm/neighborhood center of gravity reverse learning/Levy flight strategy/adaptive weights/benchmark function

分类

数理科学

引用本文复制引用

回立川,李瑶,李欢欢,于淼,王久阳..多策略改进的麻雀搜索算法[J].辽宁工程技术大学学报(自然科学版),2023,42(6):722-732,11.

基金项目

辽宁省高等学校基本科研项目(LJ2017QL009) (LJ2017QL009)

辽宁工程技术大学学科创新团队资助项目(LNTU20TD-32) (LNTU20TD-32)

辽宁工程技术大学学报(自然科学版)

OA北大核心CSTPCD

1008-0562

访问量0
|
下载量0
段落导航相关论文