| 注册
首页|期刊导航|辽宁工程技术大学学报(自然科学版)|自适应增强优化的瓦斯涌出量预测模型

自适应增强优化的瓦斯涌出量预测模型

杨超 周文铮 刘雨竹

辽宁工程技术大学学报(自然科学版)2023,Vol.42Issue(6):733-739,7.
辽宁工程技术大学学报(自然科学版)2023,Vol.42Issue(6):733-739,7.DOI:10.11956/j.issn.1008-0562.2023.06.013

自适应增强优化的瓦斯涌出量预测模型

Prediction model of gas emission based on adaptive enhancement optimization

杨超 1周文铮 2刘雨竹2

作者信息

  • 1. 合肥工业大学 电气与自动化工程学院,安徽 合肥 230000
  • 2. 辽宁工程技术大学 电气与控制工程学院,辽宁 葫芦岛 125105
  • 折叠

摘要

Abstract

In order to improve the prediction ability of gas emission in mining face,a prediction model based on gate recurrent unit(GRU)is proposed to predict the gas emission by using the relevant influencing factors of gas emission.The initialization process of the sparrow search algorithm is improved,and the improved sparrow algorithm is used to optimize the hyper parameters affecting the GRU prediction model,so as to improve the prediction accuracy of gas emission.Combined with the adaptive enhancement ability of AdaBoost algorithm,an adaptive enhanced optimization gas emission prediction model(ISSA-GRU-AdaBoost model)is constructed,and the prediction index features are extracted by using principal component analysis to improve the rapidity of prediction.The model is compared with PSO-ELM model,QPSO-LSTM model,PSO-BP model and SSA-SVM model.The results show that the prediction accuracy of ISSA-GRU-AdaBoost prediction model is higher.

关键词

瓦斯涌出量/预测模型/门控循环单元/麻雀搜索算法/AdaBoost算法/自适应增强优化

Key words

gas emission/forecast model/gate recurrent unit/sparrow search algorithm/AdaBoost algorithm/adaptive enhancement optimization

分类

矿业与冶金

引用本文复制引用

杨超,周文铮,刘雨竹..自适应增强优化的瓦斯涌出量预测模型[J].辽宁工程技术大学学报(自然科学版),2023,42(6):733-739,7.

基金项目

国家自然科学基金项目(51974151 ()

71771111) ()

辽宁工程技术大学学报(自然科学版)

OA北大核心CSTPCD

1008-0562

访问量0
|
下载量0
段落导航相关论文