| 注册
首页|期刊导航|辽宁工程技术大学学报(自然科学版)|结合时间注意力机制的Bi-GRU-Atten的短时交通流预测

结合时间注意力机制的Bi-GRU-Atten的短时交通流预测

徐厚生 郭佳丽

辽宁工程技术大学学报(自然科学版)2023,Vol.42Issue(6):763-768,6.
辽宁工程技术大学学报(自然科学版)2023,Vol.42Issue(6):763-768,6.DOI:10.11956/j.issn.1008-0562.2023.06.017

结合时间注意力机制的Bi-GRU-Atten的短时交通流预测

Short-term traffic flow forecast based on Bi-GRU-Atten algorithm with multi-layer time attention mechanism

徐厚生 1郭佳丽2

作者信息

  • 1. 沈阳建筑大学 理学部,辽宁 沈阳 110168
  • 2. 沈阳建筑大学 计算机科学与工程学院,辽宁 沈阳 110168
  • 折叠

摘要

Abstract

In order to use the deep learning model to predict the future highway traffic flow,the bi-directional gated loop unit algorithm(Bi-GRU)is used to extract information from two-way propagation to fully learn the time correlation characteristics of historical traffic flow,at the same time,the attention mechanism is adopted to distinguish the importance of traffic time series by correctly allocating weights,so as to further improve the computational efficiency of prediction.The open source highway data set is used to verify the model,and the results show that the proposed method is superior to other deep learning algorithms in computational efficiency and prediction accuracy,such as recurrent neural network(RNN),long-term and short-term memory network(LSTM),bidirectional long-and short-term memory network(Bi-LSTM),and bidirectional gated cycle unit algorithm without attention mechanism,and can be used to predict short-term traffic flow.

关键词

交通流量预测/时间注意力机制/Bi-GRU/时间相关特征/预测效率

Key words

traffic flow forecast/time attention mechanism/Bi-GRU/time-dependent feature/prediction efficiency

分类

信息技术与安全科学

引用本文复制引用

徐厚生,郭佳丽..结合时间注意力机制的Bi-GRU-Atten的短时交通流预测[J].辽宁工程技术大学学报(自然科学版),2023,42(6):763-768,6.

基金项目

国家自然科学基金项目(61803275) (61803275)

辽宁省"兴辽英才计划"项目(XLYC1907044) (XLYC1907044)

辽宁省自然科学基金项目(2020-MS-218) (2020-MS-218)

辽宁省教育厅重点攻关项目(LJKZZ20220082) (LJKZZ20220082)

辽宁工程技术大学学报(自然科学版)

OA北大核心CSTPCD

1008-0562

访问量0
|
下载量0
段落导航相关论文