|国家科技期刊平台
首页|期刊导航|棉纺织技术|基于能耗参数的细纱机预维护系统设计

基于能耗参数的细纱机预维护系统设计OACSTPCD

Design of pre-maintenance system for spinning frame based on energy consumption parameter

中文摘要英文摘要

针对目前细纱机周期性维护方法的缺点,设计并开发了一种基于能耗参数的预测性维护系统.该系统利用传感器技术实现细纱机能耗数据的实时采集;通过基于BP和PSO-BP两种不同神经网络的预测模型试验对比,选取基于PSO-BP神经网络故障预测模型,对细纱机在不同故障下的能耗参数变化趋势进行预测;最后基于B/S架构开发了基于能耗参数的预维护系统,实现了细纱机的预测性维护.结果表明:该系统的应用优化了细纱机的维护管理,降低了细纱机维护成本.认为:该系统可分析细纱机未来运行状态,达到了预测细纱机故障的目的.

Aiming at the shortcomings of the current spinning frame periodic maintenance methods,a predictive maintenance system based on energy consumption parameters was designed and developed.Sensor technology was utilized in the system to achieve real-time collection of energy consumption data for spinning machines.By comparing the prediction models based on two different neural networks,BP and PSO-BP,a fault prediction model based on PSO-BP neural network was selected to predict the trend of energy consumption parameters changes of spinning frames under different faults.Finally,a pre maintenance system based on energy consumption parameters was developed based on B/S architecture,which realized the predictive maintenance of spinning frame.The results indicated that the system application has optimized the maintenance management of the spinning frame and reduced the maintenance cost of the spinning frame.It is considered that the system can be used to analyze the future running state of spinning frame and to predict the faults of spinning frame.

张保威;赵朋磊;王永华;江豪;李鑫;张赛

郑州轻工业大学,河南郑州,450000郑州轻大产业技术研究院,河南郑州,450000

轻工业

细纱机维护管理系统故障预测粒子群算法神经网络

spinning framemaintenance management systemfault predictionparticle swarm optimization algorithmneural network

《棉纺织技术》 2024 (001)

13-20 / 8

河南省科技厅科技攻关项目(232102220024)

评论