| 注册
首页|期刊导航|工矿自动化|基于图像识别技术的冲击地压危险区域智能化评价方法

基于图像识别技术的冲击地压危险区域智能化评价方法

韩刚 解嘉豪 秦喜文 王星 郝晓琦

工矿自动化2023,Vol.49Issue(12):77-86,93,11.
工矿自动化2023,Vol.49Issue(12):77-86,93,11.DOI:10.13272/j.issn.1671-251x.2023010047

基于图像识别技术的冲击地压危险区域智能化评价方法

Intelligent assessment method for rockburst hazard areas based on image recognition technology

韩刚 1解嘉豪 1秦喜文 2王星 3郝晓琦1

作者信息

  • 1. 中煤能源研究院有限责任公司,陕西 西安 710054||中煤冲击地压与水害防治研究中心,内蒙古鄂尔多斯 017200
  • 2. 中煤西安设计工程有限责任公司,陕西西安 710054
  • 3. 中煤能源研究院有限责任公司,陕西 西安 710054
  • 折叠

摘要

Abstract

In traditional rockburst hazard assessment methods,there are problems of large computational complexity and low precision in dividing hazardous areas.In order to meet the development needs of intelligent and visual prevention and control of rockburst,an intelligent assessment method for rockburst hazard areas based on image recognition technology is proposed.Using a semi quantitative estimation method,the method quantitatively characterizes the main controlling factors of dynamic and static loads for 11 types of rockburst hazards.Based on OpenCV machine vision library and deep learning model,the method achieves image recognition for a single main control factor.By constructing a mapping matrix between the grayscale of the image and the stress concentration coefficient,linear and nonlinear superposition of a single influencing factor is achieved to obtain the stress concentration coefficient matrix of the assessment area.Using the min max standardization method to construct a 4-level discrimination standard of"no,weak,moderate,and strong"for the hazard area of rockburst,the method achieves graded and division assessment.A software for intelligent assessment of rockburst hazards is developed based on Python language,and the actual application effect of the software is tested.The results show that the software improves the traditional one-dimensional linear hazard area division method for roadways to a two-dimensional plane division method for the entire mining space.It significantly improvies the assessment efficiency and precision of hazard area division and reduces labor costs.The assessment results are highly consistent with the microseismic energy density cloud map and the on-site measured mining pressure pattern,which can provide effective guidance for the prevention and control of on-site rockburst.

关键词

煤炭开采/冲击地压/危险性评价/危险区域划分/图像识别

Key words

coal mining/rockburst/hazard assessment/hazard area division/image recognition

分类

矿业与冶金

引用本文复制引用

韩刚,解嘉豪,秦喜文,王星,郝晓琦..基于图像识别技术的冲击地压危险区域智能化评价方法[J].工矿自动化,2023,49(12):77-86,93,11.

基金项目

国家自然科学基金面上项目(52174116). (52174116)

工矿自动化

OA北大核心CSCDCSTPCD

1671-251X

访问量0
|
下载量0
段落导航相关论文