| 注册
首页|期刊导航|统计与决策|基于贝叶斯支持向量回归机的稳健参数设计

基于贝叶斯支持向量回归机的稳健参数设计

周晓剑 顾翔

统计与决策2023,Vol.39Issue(24):23-28,6.
统计与决策2023,Vol.39Issue(24):23-28,6.DOI:10.13546/j.cnki.tjyjc.2023.24.004

基于贝叶斯支持向量回归机的稳健参数设计

Robust Parameter Design Based on Bayesian Support Vector Regression Machine

周晓剑 1顾翔1

作者信息

  • 1. 南京邮电大学 管理学院,南京 210023
  • 折叠

摘要

Abstract

Robust parameter design is an important technique for quality improvement,which can be used to reduce and con-trol fluctuations from the source of production.The dual response surface method is a commonly used one.It mainly uses a low-or-der polynomial model to fit the mean and variance responses.However,when the sample is complex(such as nonlinear or high-di-mensional samples),the fitting performance of the low-order polynomial model is often worse,and the solution to the optimization problem is not effective.Support vector regression machine has good fitting potential to nonlinear data,but its performance de-pends on the reasonable setting of parameters.This paper applies Bayesian optimization to parameter selection of support vector regression machine,then uses the optimized model for the construction of response surface model in robust parameter design,and finally proposes a robust parameter design method based on Bayesian support vector regression machine.The experimental results show that the proposed method can be used to obtain more accurate response surfaces than other common optimization methods,capable of approximating reliable optimal factor collocation levels in practical applications.

关键词

稳健参数设计/支持向量回归机/贝叶斯优化

Key words

robust parameter design/support vector regression machine/Bayesian optimization

分类

数理科学

引用本文复制引用

周晓剑,顾翔..基于贝叶斯支持向量回归机的稳健参数设计[J].统计与决策,2023,39(24):23-28,6.

基金项目

国家自然科学基金资助项目(71872088) (71872088)

统计与决策

OA北大核心CHSSCDCSSCICSTPCD

1002-6487

访问量0
|
下载量0
段落导航相关论文