| 注册
首页|期刊导航|网络安全与数据治理|基于黑盒测试框架的深度学习模型版权保护方法

基于黑盒测试框架的深度学习模型版权保护方法

屈详颜 于静 熊刚 盖珂珂

网络安全与数据治理2023,Vol.42Issue(12):1-6,13,7.
网络安全与数据治理2023,Vol.42Issue(12):1-6,13,7.DOI:10.19358/j.issn.2097-1788.2023.12.001

基于黑盒测试框架的深度学习模型版权保护方法

Copyright protection for deep learning models utilizing a black-box testing framework

屈详颜 1于静 1熊刚 1盖珂珂2

作者信息

  • 1. 中国科学院信息工程研究所,北京 100085||中国科学院大学 网络空间安全学院,北京 100049
  • 2. 北京理工大学 网络空间安全学院,北京 100081
  • 折叠

摘要

Abstract

With the rapid development of generative artificial intelligence technologies,the copyright protection of deep learning models has become increasingly important.Existing copyright protection methods generally adopt deterministic test sample genera-tion algorithms,which suffer from inefficiencies in selection and vulnerabilities to adversarial attacks.To address these issues,we propose a copyright protection method for deep learning models based on a black-box testing framework.This method introduces a sample generation strategy based on randomness algorithms,effectively improving test efficiency and reducing the risk of adversari-al attacks.Additionally,new test metrics and algorithms are introduced for black-box scenarios,enhancing the defensive capabili-ties of black-box testing and ensuring each metric possesses sufficient orthogonality.In experimental validation,the proposed method demonstrates high efficiency in copyright judgment accuracy and reliability,effectively reducing the number of highly cor-related indicators.

关键词

生成式人工智能/深度学习模型/版权保护/黑盒防御

Key words

generative artificial intelligence/deep learning models/copyright protection/black box defense

分类

信息技术与安全科学

引用本文复制引用

屈详颜,于静,熊刚,盖珂珂..基于黑盒测试框架的深度学习模型版权保护方法[J].网络安全与数据治理,2023,42(12):1-6,13,7.

基金项目

国家自然科学基金(62006222) (62006222)

网络安全与数据治理

2097-1788

访问量0
|
下载量0
段落导航相关论文