| 注册
首页|期刊导航|网络与信息安全学报|基于程序过程间语义优化的深度学习漏洞检测方法

基于程序过程间语义优化的深度学习漏洞检测方法

李妍 羌卫中 李珍 邹德清 金海

网络与信息安全学报2023,Vol.9Issue(6):86-101,16.
网络与信息安全学报2023,Vol.9Issue(6):86-101,16.DOI:10.11959/j.issn.2096-109x.2023085

基于程序过程间语义优化的深度学习漏洞检测方法

Deep learning vulnerability detection method based on optimized inter-procedural semantics of programs

李妍 1羌卫中 1李珍 1邹德清 1金海2

作者信息

  • 1. 大数据技术与系统国家地方联合工程研究中心服务计算技术与系统教育部重点实验室,湖北 武汉 430074||分布式系统安全湖北省重点实验室,湖北 武汉 430074||华中科技大学网络空间安全学院,湖北 武汉 430074
  • 2. 大数据技术与系统国家地方联合工程研究中心服务计算技术与系统教育部重点实验室,湖北 武汉 430074||华中科技大学计算机科学与技术学院,湖北 武汉 430074
  • 折叠

摘要

Abstract

In recent years,software vulnerabilities have been causing a multitude of security incidents,and the early discovery and patching of vulnerabilities can effectively reduce losses.Traditional rule-based vulnerability detection methods,relying upon rules defined by experts,suffer from a high false negative rate.Deep learning-based methods have the capability to automatically learn potential features of vulnerable programs.However,as software complexity increases,the precision of these methods decreases.On one hand,current methods mostly operate at the function level,thus unable to handle inter-procedural vulnerability samples.On the other hand,models such as BGRU and BLSTM exhibit performance degradation when confronted with long input sequences,and are not adept at capturing long-term dependencies in program statements.To address the aforementioned issues,the existing program slicing method has been optimized,enabling a comprehensive contextual analysis of vulnerabilities triggered across functions through the combination of intra-procedural and inter-procedural slicing.This facilitated the capture of the complete causal relationship of vulnerability triggers.Furthermore,a vulnerability detection task was conducted using a Transformer neural network architecture equipped with a multi-head attention mechanism.This architecture collectively focused on information from different representation subspaces,allowing for the extraction of deep features from nodes.Unlike recurrent neural networks,this approach resolved the issue of information decay and effectively learned the syntax and semantic information of the source program.Experimental results demonstrate that this method achieves an F1 score of 73.4%on a real software dataset.Compared to the comparative methods,it shows an improvement of 13.6%to 40.8%.Furthermore,it successfully detects several vulnerabilities in open-source software,confirming its effectiveness and applicability.

关键词

漏洞检测/程序切片/深度学习/注意力机制

Key words

vulnerability detection/program slice/deep learning/attention mechanism

分类

信息技术与安全科学

引用本文复制引用

李妍,羌卫中,李珍,邹德清,金海..基于程序过程间语义优化的深度学习漏洞检测方法[J].网络与信息安全学报,2023,9(6):86-101,16.

基金项目

国家自然科学基金(62272187) (62272187)

国家通用技术基础研究联合基金(U1936211)The National Natural Science Foundation of China(62272187),The Joint Funds of the National Natural Science Foundation of China(U1936211) (U1936211)

网络与信息安全学报

OACSTPCD

2096-109X

访问量0
|
下载量0
段落导航相关论文