安全多方计算应用的隐私度量方法OACSTPCD
Privacy Measures for Secure Multi-party Computing Applications
安全多方计算应用对输入信息的隐私保护能力,一方面依靠底层的安全机制,另一方面依靠具体的目标函数.目前对安全多方计算的研究主要集中于防止计算过程泄露信息的安全机制;而对部署安全多方计算的目标函数对参与者的输入信息的隐私保护能力的度量或评估方法研究较少.目标函数的各参与者通过合法的输入和输出推导其他参与者的输入信息的问题不能由安全多方计算的安全机制阻止,因此对目标函数的隐私保护强度的度量关乎安全多方计算方案的具体实施应用.根据信息熵模型,从攻击者的角度定义平均熵和特定熵的概念,提出计算信息收益的方法.进而,通过计算目标函数的理想隐私损耗和实际安全多方计算应用中的实际隐私损耗,衡量安全多方计算具体应用方案的隐私保护强度.
The privacy protection ability of secure multi-party computing application to input information depends on the underlying security mechanism on the one hand,and on the other hand depends on the task functions.At present,the research on secure multi-party computing mainly focuses on the security mechanism to prevent information leakage in the process of computing.However,there are few studies on the measure of task functions'ability to protect the input information of the participants.The problem that each participant of the task function deduces the input information of other participants through the legitimate input and output cannot be prevented by the security mechanism of secure multi-party computing,so the measurements of the privacy protection power of the task function are related to the concrete implementation and application of secure multi-party computing schemes.In this paper,according to the information entropy model,the concepts of average entropy and specific entropy are defined from the point of view of the attacker,and a method to calculate information benefits is proposed.Then,the privacy protection strength of the specific application scheme of secure multi-party computing schemes is measured by calculating the ideal privacy loss of the objective function and the actual privacy loss of the actual secure multi-party computing application.
熊维;王海洋;唐祎飞;刘伟
神州融安数字科技(北京)有限公司 北京 100086北京国际大数据交易有限公司 北京 100020大数据协同安全技术国家工程研究中心 北京 100071
计算机与自动化
安全多方计算隐私度量信息熵计算信息收益隐私损耗
secure multi-party computingprivacy metricinformation entropycomputing information benefitsprivacy loss
《信息安全研究》 2024 (001)
6-11 / 6
评论