| 注册
首页|期刊导航|西北师范大学学报(自然科学版)|具有饱和恢复率的SEIR时滞模型的行波解

具有饱和恢复率的SEIR时滞模型的行波解

卫珍妮

西北师范大学学报(自然科学版)2024,Vol.60Issue(1):20-29,10.
西北师范大学学报(自然科学版)2024,Vol.60Issue(1):20-29,10.DOI:10.16783/j.cnki.nwnuz.2024.01.005

具有饱和恢复率的SEIR时滞模型的行波解

Traveling wave solutions for a delayed SEIR model with saturated recovery rate

卫珍妮1

作者信息

  • 1. 西安电子科技大学 数学与统计学院,陕西 西安 710071
  • 折叠

摘要

Abstract

The traveling wave solutions are discussed for a delayed SEIR epidemic model with saturated recovery rate.Firstly,the well-posedness of the initial value problem for a class of two-dimensional system is considered.Then by constructing the bounded vector-value upper-lower solutions,a closed convex set is obtained.Finally,the existence of nontrivial traveling wave solutions is proved for basic reproduction number R0>1,wave velocity c>c* by applying the Schauder's fixed point theorem.

关键词

SEIR模型/饱和恢复率/时滞/行波解/Schauder不动点定理

Key words

SEIR model/saturated recovery rate/time delay/traveling wave solution/Schauder's fixed point theorem

分类

数理科学

引用本文复制引用

卫珍妮..具有饱和恢复率的SEIR时滞模型的行波解[J].西北师范大学学报(自然科学版),2024,60(1):20-29,10.

西北师范大学学报(自然科学版)

OACSTPCD

1001-988X

访问量0
|
下载量0
段落导航相关论文