| 注册
首页|期刊导航|智能系统学报|融合Doc2vec与GCN的多类型蛋白质相互作用预测方法

融合Doc2vec与GCN的多类型蛋白质相互作用预测方法

曹汉童 陈璟

智能系统学报2023,Vol.18Issue(6):1165-1172,8.
智能系统学报2023,Vol.18Issue(6):1165-1172,8.DOI:10.11992/tis.202212029

融合Doc2vec与GCN的多类型蛋白质相互作用预测方法

Prediction of multitype protein interactions combining Doc2vec and GCN

曹汉童 1陈璟2

作者信息

  • 1. 江南大学 人工智能与计算机学院,江苏 无锡 214122
  • 2. 江南大学 人工智能与计算机学院,江苏 无锡 214122||江南大学 江苏省模式识别与计算智能工程实验室,江苏 无锡 214122
  • 折叠

摘要

Abstract

The study of multitype protein-protein interactions(PPIs)is the basis for understanding biological processes and revealing disease mechanisms from a systematic perspective.Existing prediction methods for multiple types of PPIs,such as GNN-PPI and PIPR,show a considerable decline in test accuracy when the breadth-and depth-first searches are used to divide data sets.Therefore,this paper proposes a new multitype PPI prediction method(GDP)based on the Doc2vec method and graph convolutional neural network technology,which does not need to rely on the physical and biological properties of proteins.Moreover,the method only uses sequence information to encode proteins and com-bines the network structure information to conduct characteristic protein polymerization for developing PPI information to perform multitype prediction.Experimental results show that this method can effectively improve the prediction ac-curacy of multiple type PPIs in real data with different scales,especially in PPI between new proteins that have not been previously observed in the training set.

关键词

PPI网络/图神经网络/蛋白质功能预测/深度学习/生物学意义/复杂网络/图卷积神经网络/非监督学习/蛋白质序列

Key words

PPI network/graph neural network/protein function prediction/deep learning/biological significance/com-plex network/GCN/unsupervised learning/protein sequence

分类

计算机与自动化

引用本文复制引用

曹汉童,陈璟..融合Doc2vec与GCN的多类型蛋白质相互作用预测方法[J].智能系统学报,2023,18(6):1165-1172,8.

基金项目

江苏省青年自然科学基金项目(BK20150159). (BK20150159)

智能系统学报

OACSCDCSTPCD

1673-4785

访问量0
|
下载量0
段落导航相关论文