| 注册
首页|期刊导航|智能系统学报|基于物理先验的深度特征融合水下图像复原

基于物理先验的深度特征融合水下图像复原

张心祎 谭耀 邢向磊

智能系统学报2023,Vol.18Issue(6):1185-1196,12.
智能系统学报2023,Vol.18Issue(6):1185-1196,12.DOI:10.11992/tis.202304038

基于物理先验的深度特征融合水下图像复原

Deep feature fusion for underwater-image restoration based on physical priors

张心祎 1谭耀 1邢向磊1

作者信息

  • 1. 哈尔滨工程大学 智能科学与工程学院,黑龙江 哈尔滨 151001
  • 折叠

摘要

Abstract

Due to interference factors such as suspended impurities of plankton and varying spectral absorption rates in an underwater environment,underwater images often suffer from degradation issues such as image blur,color distortion,and uneven illumination.This paper proposes an underwater-image reconstruction model that combines physical ima-ging principles with data-driven deep-learning methods.Using a deep neural network to infer the learnable parameters in the physical imaging model,the model generates data-driven restoration feature maps and physically informed restora-tion feature maps through modulated convolution and prior physical knowledge,respectively.Deep feature fusion with a mixed-attention mechanism is introduced to reconstruct the final image.Experimental results showed that this method can reduce noise,improve contrast,and restore image details,enhancing the visual quality and target detection accuracy of underwater images and increasing the robustness and generalizability of the underwater learning model.

关键词

深度学习/水下图像恢复/神经网络/信息分离/编码器/解码器/特征提取/图像融合

Key words

deep learning/underwater-image restoration/neural networks/information separation/encoder/decoder/feature extraction/image fusion

分类

计算机与自动化

引用本文复制引用

张心祎,谭耀,邢向磊..基于物理先验的深度特征融合水下图像复原[J].智能系统学报,2023,18(6):1185-1196,12.

基金项目

国家自然科学基金项目(62076078,61703119). (62076078,61703119)

智能系统学报

OACSCDCSTPCD

1673-4785

访问量0
|
下载量0
段落导航相关论文