| 注册
首页|期刊导航|智能系统学报|基于注意力机制的SOLOA船舶实例分割算法

基于注意力机制的SOLOA船舶实例分割算法

孙雨鑫 苏丽 陈禹升 苑守正 孟浩

智能系统学报2023,Vol.18Issue(6):1197-1204,8.
智能系统学报2023,Vol.18Issue(6):1197-1204,8.DOI:10.11992/tis.202210039

基于注意力机制的SOLOA船舶实例分割算法

SOLOA ship instance segmentation algorithm based on attention

孙雨鑫 1苏丽 2陈禹升 1苑守正 1孟浩2

作者信息

  • 1. 哈尔滨工程大学 智能科学与工程学院,黑龙江 哈尔滨 150001
  • 2. 哈尔滨工程大学 智能科学与工程学院,黑龙江 哈尔滨 150001||哈尔滨工程大学 船舶装备智能化技术与应用教育部重点实验室,黑龙江 哈尔滨 150001
  • 折叠

摘要

Abstract

At present,the instance segmentation of visible ship images remains a highly challenging task.Most instance segmentation algorithms cannot effectively segment ship images in complex scenes due to the intricate and variable nature of ship images.A segmenting objects by locations based on attention(SOLOA)algorithm for ship instance seg-mentation,which utilizes the spatial attention mechanism to maximize the instance information in the classification fea-tures,is proposed in this paper.Here,the interrelationships between the image instances are modeled and fused with seg-mentation features.Training and testing results of the newly constructed ship image dataset show that the improved net-work model can effectively enhance the instance information in the network features and reduce the background inter-ferences.The accuracy of ship instance segmentation by the SOLOA algorithm is higher than that of other algorithms;hence,the proposed algorithm can be effectively adapted to meet the demands of ship segmentation in complex scenes.

关键词

船舶目标/实例分割/复杂海上场景/深度学习/卷积神经网络/注意力机制/单阶段实例分割/可见光图像

Key words

ship object/instance segmentation/complex scene/deep learning/convolution neural network/attention/one-stage instance segmentation/visible light image

分类

信息技术与安全科学

引用本文复制引用

孙雨鑫,苏丽,陈禹升,苑守正,孟浩..基于注意力机制的SOLOA船舶实例分割算法[J].智能系统学报,2023,18(6):1197-1204,8.

基金项目

国家重点研发计划项目(2019YFE0105400) (2019YFE0105400)

船舶态势智能感知系统研制项目(MC-201920-X01) (MC-201920-X01)

中央高校基本科研业务费专项资金-博士研究生创新基金项目(3072022GIP0403). (3072022GIP0403)

智能系统学报

OA北大核心CSCDCSTPCD

1673-4785

访问量0
|
下载量0
段落导航相关论文