| 注册
首页|期刊导航|智能系统学报|融合知识迁移和改进YOLOv6的变电设备热像检测方法

融合知识迁移和改进YOLOv6的变电设备热像检测方法

赵振兵 冯烁 赵文清 翟永杰 王洪涛

智能系统学报2023,Vol.18Issue(6):1213-1222,10.
智能系统学报2023,Vol.18Issue(6):1213-1222,10.DOI:10.11992/tis.202303030

融合知识迁移和改进YOLOv6的变电设备热像检测方法

Thermd image detection method for substation equipment by incorporat-ing knowledge migration and improved YOLOv6

赵振兵 1冯烁 2赵文清 3翟永杰 4王洪涛3

作者信息

  • 1. 华北电力大学 电子与通信工程系,河北 保定 071003||华北电力大学 复杂能源系统智能计算教育部工程研究中心,河北 保定 071003||华北电力大学 河北省电力物联网技术重点实验室,河北 保定 071003
  • 2. 华北电力大学 电子与通信工程系,河北 保定 071003
  • 3. 华北电力大学 复杂能源系统智能计算教育部工程研究中心,河北 保定 071003||华北电力大学 控制与计算机工程学院,河北 保定 071003
  • 4. 华北电力大学 控制与计算机工程学院,河北 保定 071003
  • 折叠

摘要

Abstract

To address the problems of insufficient complex background samples and difficulty in device location in sub-station equipment thermal image detection,a fusion knowledge transfer and improved YOLOv6 detection method are proposed.The diffusion model was used to extract background knowledge from extraterritorial data for generating back-ground images,solving the problem of insufficient complex background samples.The device samples were then mi-grated to the background images to generate artificial images.The multi-head self-attention mechanism and explicit visual center module were integrated into YOLOv6 to improve its feature extraction capability,solving the issue of diffi-culty in detecting devices.The experiment shows that the mAP and mAR of the proposed method reach 86.4%and 89.4%,indicating an improvement of 3.1%and 1.5%compared to the baseline model,respectively.This study provides a new implementation method for thermal image detection of substation equipment.

关键词

变电设备/热红外图像/知识迁移/样本生成/目标检测/扩散模型/数据扩增/深度学习

Key words

substation equipment/thermal infrared image/knowledge migration/sample generation/object detection/diffusion model/data augmentation/deep learning

分类

信息技术与安全科学

引用本文复制引用

赵振兵,冯烁,赵文清,翟永杰,王洪涛..融合知识迁移和改进YOLOv6的变电设备热像检测方法[J].智能系统学报,2023,18(6):1213-1222,10.

基金项目

国家自然科学基金项目(61871182,U21A20486) (61871182,U21A20486)

河北省自然科学基金项目(F2020502009,F2021-502008,F2021502013). (F2020502009,F2021-502008,F2021502013)

智能系统学报

OA北大核心CSCDCSTPCD

1673-4785

访问量0
|
下载量0
段落导航相关论文