| 注册
首页|期刊导航|智能系统学报|基于语义分割视觉伺服的种苗自动夹取系统设计

基于语义分割视觉伺服的种苗自动夹取系统设计

翟永杰 王家豪 张鑫 胡东阳 王乾铭 徐大伟 刘亚军

智能系统学报2023,Vol.18Issue(6):1259-1267,9.
智能系统学报2023,Vol.18Issue(6):1259-1267,9.DOI:10.11992/tis.202212026

基于语义分割视觉伺服的种苗自动夹取系统设计

Design of automatic picking system for seedlings based on semantic segmentation visual servo

翟永杰 1王家豪 1张鑫 1胡东阳 1王乾铭 1徐大伟 2刘亚军3

作者信息

  • 1. 华北电力大学 自动化系,河北 保定 071003
  • 2. 华北电力大学 自动化系,河北 保定 071003||中国科学院自动化研究所 复杂系统管理与控制国家重点实验室,北京 100190
  • 3. 湖北壹鸣生物科技有限公司,湖北 钟祥 431900
  • 折叠

摘要

Abstract

Modern plant tissue culture is a time-consuming and labor-intensive task with monotonous work.An automat-ic seedling clamping system based on semantic segmentation visual servo was designed and tested to reduce labor costs and increase production.First,a vision localization method was proposed based on the DP-BiSeNetV2 semantic seg-mentation algorithm to determine the appropriate clamping point on the root.Further,a clamping device suitable for the actual working environment was designed,developed,and tested.Finally,an automatic seedling clamping system was constructed by integrating the vision localization algorithm with the robot clamping device.In the experimental session,tests were conducted using the Phalaenopsis seedling dataset.In the semantic segmentation experiment,the mIoU and pixel accuracy of the DP-BiSeNetV2 model were 63.51%and 98.25%,respectively.Furthermore,the success rate was 81.7%in the clamping experiment.Experimental results show that the automatic clamping system has a large potential to meet the transplantation requirements of plant tissue culture production lines.

关键词

语义分割/视觉伺服/种苗/夹取点定位/夹取系统/机械手/智能抓取/深度学习

Key words

semantic segmentation/visual servo/seedling/grasping point localization/grasping system/robot arm/intel-ligent robotic grasping/deep learning

分类

信息技术与安全科学

引用本文复制引用

翟永杰,王家豪,张鑫,胡东阳,王乾铭,徐大伟,刘亚军..基于语义分割视觉伺服的种苗自动夹取系统设计[J].智能系统学报,2023,18(6):1259-1267,9.

基金项目

国家自然科学基金联合基金重点支持项目(U21A20486) (U21A20486)

中国科学院自动化研究所复杂系统管理与控制国家重点实验室开放课题(20220102). (20220102)

智能系统学报

OA北大核心CSCDCSTPCD

1673-4785

访问量0
|
下载量0
段落导航相关论文