微表情面部肌电跨模态分析及标注算法OACHSSCDCSTPCD
Cross-modal analysis of facial EMG in micro-expressions and data annotation algorithm
长久以来,微表情的小样本问题始终制约着微表情分析的发展,而小样本问题归根到底是因为微表情的数据标注十分困难.本研究希望借助面部肌电作为技术手段,从微表情数据自动标注、半自动标注和无标注三个方面各提出一套解决方案.对于自动标注,提出基于面部远端肌电的微表情自动标注方案;对于半自动标注,提出基于单帧标注的微表情起止帧自动标注;对于无标注,提出了基于肌电信号的跨模态自监督学习算法.同时,本研究还希望借助肌电模态,对微表情的呈现时间和幅度等机理特征进行拓展研究.
For a long time,the issue of limited samples has been a major hindrance to the development of micro-expression analysis,and this limitation primarily stems from the inherent difficulty in annotating micro-expression data.In this research,we aim to address this challenge by leveraging facial electromyography as a technical approach and propose three solutions for micro-expression data annotation:automatic annotation,semi-automatic annotation,and unsupervised annotation.Specifically,we first present an automatic micro-expression annotation system based on distal facial electromyography.Second,we propose a semi-automatic annotation scheme for micro-expression onset and offset frames based on single-frame annotation.Finally,for unsupervised annotation,we introduce a cross-modal self-supervised learning algorithm based on electromyographic signals.Additionally,this research endeavors to explore the temporal and intensity characteristics of micro-expressions using the electromyography modality.
王甦菁;王俨;李婧婷;东子朝;张建行;刘烨
中国科学院行为科学重点实验室(中国科学院心理研究所),北京 100101||中国科学院大学心理学系,北京 100039江苏科技大学计算机科学与工程学院,镇江 212003中国科学院大学心理学系,北京 100039||中国科学院心理研究所,脑与认知科学国家重点实验室,北京 100039
心理学
图像标注微表情分析远端面部肌电微表情数据标注
image annotationmicro-expression analysisdistal facial electromyographymicro-expression data annotation
《心理科学进展》 2024 (001)
1-13 / 13
国家自然科学基金项目(62276252,U19B2032,62106256).
评论