| 注册
首页|期刊导航|心理科学进展|微表情面部肌电跨模态分析及标注算法

微表情面部肌电跨模态分析及标注算法

王甦菁 王俨 李婧婷 东子朝 张建行 刘烨

心理科学进展2024,Vol.32Issue(1):1-13,13.
心理科学进展2024,Vol.32Issue(1):1-13,13.DOI:10.3724/SP.J.1042.2024.00001

微表情面部肌电跨模态分析及标注算法

Cross-modal analysis of facial EMG in micro-expressions and data annotation algorithm

王甦菁 1王俨 1李婧婷 1东子朝 1张建行 2刘烨3

作者信息

  • 1. 中国科学院行为科学重点实验室(中国科学院心理研究所),北京 100101||中国科学院大学心理学系,北京 100039
  • 2. 江苏科技大学计算机科学与工程学院,镇江 212003
  • 3. 中国科学院大学心理学系,北京 100039||中国科学院心理研究所,脑与认知科学国家重点实验室,北京 100039
  • 折叠

摘要

Abstract

For a long time,the issue of limited samples has been a major hindrance to the development of micro-expression analysis,and this limitation primarily stems from the inherent difficulty in annotating micro-expression data.In this research,we aim to address this challenge by leveraging facial electromyography as a technical approach and propose three solutions for micro-expression data annotation:automatic annotation,semi-automatic annotation,and unsupervised annotation.Specifically,we first present an automatic micro-expression annotation system based on distal facial electromyography.Second,we propose a semi-automatic annotation scheme for micro-expression onset and offset frames based on single-frame annotation.Finally,for unsupervised annotation,we introduce a cross-modal self-supervised learning algorithm based on electromyographic signals.Additionally,this research endeavors to explore the temporal and intensity characteristics of micro-expressions using the electromyography modality.

关键词

图像标注/微表情分析/远端面部肌电/微表情数据标注

Key words

image annotation/micro-expression analysis/distal facial electromyography/micro-expression data annotation

分类

社会科学

引用本文复制引用

王甦菁,王俨,李婧婷,东子朝,张建行,刘烨..微表情面部肌电跨模态分析及标注算法[J].心理科学进展,2024,32(1):1-13,13.

基金项目

国家自然科学基金项目(62276252,U19B2032,62106256). (62276252,U19B2032,62106256)

心理科学进展

OA北大核心CHSSCDCSSCICSTPCD

1671-3710

访问量0
|
下载量0
段落导航相关论文