子群的完全置换性对σ-幂零根的影响OACSTPCD
The influence of the totally permutability of subgroups on σ-nilpotent residual
先将幂零群推广为σ-幂零群,再研究子群的完全置换性对σ-幂零上根的影响.群G的所有使G/N为σ-幂零群的正规子群N的交称为G的σ-幂零上根,记为GNσ.设G= AB,其中A与B是完全置换的,利用子群的完全置换性质、σ-超可解群与σ-幂零群的概念和相关理论、完备Hall σ-集的性质以及有限群论的一些基本方法,给出了B正规化A的σ幂零根和中心化A的σ-幂零根的一些新的结论.
Similar to the influence on nilpotent residual of the totally permutability of subgroups,naturally,we can study their influence on σ-nilpotent residual when nilpotent groups are generalized to σ-nilpotent groups.The intersection of all normal subgroups N of G such that G/N is σ-nilpotent is called σ-nilpotent residual of G,and is denoted as GNσ.Let G=AB,where A and B are totally permutable subgroups of G,this paper gives some new conclusions that B normalises ANσ and centralises ANσ by using the concepts and theories of σ-nilpotent subgroups and σ-supersoluble subgroups,and by applying some properties and methods of complete Hall σ-set and finite group theory.
施智杰;毛月梅;马小箭
山西大同大学 数学与统计学院, 山西 大同 037009
数学
σ-超可解群σ-幂零群完全置换性Sylow子群
σ-supersoluble groupsσ-nilpotent groupstotally permutablitySylow subgroups
《浙江大学学报(理学版)》 2024 (001)
1-4,20 / 5
国家自然科学基金资助项目(11901364,11971277);山西省应用基础研究计划资助项目(201901D211439).
评论