| 注册
首页|期刊导航|吉林大学学报(信息科学版)|面向不平衡数据集的网络入侵检测算法

面向不平衡数据集的网络入侵检测算法

徐忠原 杨秀华 王业 李玲

吉林大学学报(信息科学版)2023,Vol.41Issue(6):1112-1119,8.
吉林大学学报(信息科学版)2023,Vol.41Issue(6):1112-1119,8.

面向不平衡数据集的网络入侵检测算法

Network Intrusion Detection Algorithm for Imbalanced Datasets

徐忠原 1杨秀华 2王业 3李玲3

作者信息

  • 1. 长春建筑学院电气信息学院,长春 130604
  • 2. 吉林大学大数据和网络管理中心,长春 130012
  • 3. 吉林大学通信工程学院,长春 130012
  • 折叠

摘要

Abstract

A network intrusion detection algorithm that combines systematic data pre-processing and hybrid sampling is proposed for the problem of class imbalance in intrusion detection datasets.Based on the feature distribution of the intrusion detection dataset,the feature values are systematically processed as follows:for the three categorical features,"Proto","Service"and"State",minor categories within each feature are combined to reduce the total dimension of one-hot encoding;the 18 extremely distributed numerical features are processed with logarithm and then standardized according to the numerical distribution.The class imbalance processing technology,which combines Nearmiss-1 under-sampling and SMOTE(Synthetic Minority Over-sampling Technique)is designed.Each class of samples in the training dataset is divided into sub-classes based on the"Proto","Service"and"State"categorical features,and each sub-class is under-sampled or oversampled in equal proportion.The intrusion detection model PSSNS-RF(Nearmiss and SMOTE based on Proto,Service,State-Random Forest)is built,which achieves a 97.02%multiclass detection rate in the UNSW-NB15 dataset,resolving the data imbalance problem and significantly improving the detection rate of minority classes.

关键词

网络入侵检测/不平衡数据集/特征选择/网络安全

Key words

network intrusion detection/imbalanced dataset/feature selection/network security

分类

信息技术与安全科学

引用本文复制引用

徐忠原,杨秀华,王业,李玲..面向不平衡数据集的网络入侵检测算法[J].吉林大学学报(信息科学版),2023,41(6):1112-1119,8.

基金项目

吉林省科技发展计划基金资助项目(20190302073GX) (20190302073GX)

吉林大学学报(信息科学版)

OACSTPCD

1671-5896

访问量0
|
下载量0
段落导航相关论文