Klein-Gordon-Schrödinger方程的几种差分格式及比较OACSTPCD
Several Difference Schemes and Comparisons for Klein-Gordon-Schrödinger Equation
探究在特定的初值和边界条件下一维Klein-Gordon-Schrödinger方程的几种差分格式并进行比较.利用经典的向前差分算子、中心差分算子、Crank-Nicolson方法和紧差分算子分别为Klein-Gordon-Schrödinger方程构造向前Euler式、Crank-Nicolson格式及紧差分格式.结果表明:Crank-Nicolson格式及紧差分格式能够精确地保持离散电荷和能量守恒.数值实验验证了理论结果的正确性.
Several difference schemes of one-dimensional Klein-Gordon-Schrödinger equation under specific initial val-ue and boundary conditions are investigated and contrasted.The classical forward difference operator,central differ-ence operator,Crank-Nicolson method and compact difference operator are used to construct forward Euler scheme,Crank-Nicolson scheme and compact difference scheme respectively.Results show that Crank-Nicolson scheme and the compact difference scheme can accurately conserve the discrete charge and energy conservation.The correctness of the theoretical result has been verified by numerical experiments.
林周瑾;汪佳玲;霍昱安
南京信息工程大学数学与统计学院,江苏南京 210044
数学
Klein-Gordon-Schrödinger方程向前Euler格式Crank-Nicolson格式紧差分格式电荷守恒能量守恒
Klein-Gordon-Schrödinger equationforward Euler schemeCrank-Nicolson schemecompact difference schemecharge conservationenergy conservation
《华侨大学学报(自然科学版)》 2024 (001)
108-120 / 13
国家自然科学基金青年基金资助项目(11801277)
评论