| 注册
首页|期刊导航|舰船电子工程|基于多融合人工智能的退化故障预后方法

基于多融合人工智能的退化故障预后方法

李泳龙 王振东 翟玉婷

舰船电子工程2023,Vol.43Issue(10):61-66,6.
舰船电子工程2023,Vol.43Issue(10):61-66,6.DOI:10.3969/j.issn.1672-9730.2023.10.014

基于多融合人工智能的退化故障预后方法

Prognostic Method of Degradation Fault Based on Multi-fusion Artificial Intelligence

李泳龙 1王振东 1翟玉婷2

作者信息

  • 1. 海军大连舰艇学院学员一大队 大连 116018
  • 2. 海军大连舰艇学院信息系统系 大连 116018
  • 折叠

摘要

Abstract

There are many problems in the prognosis of current equipment degradation faults,such as few historical monitor-ing data samples,difficult to collect degradation fault samples,static fault prediction and so on.Therefore,the prognostic method of degradation fault based on multi-fusion artificial intelligence is proposed,in which the dynamic update support vector regression can improve the accuracy of static data prediction,principal components analysis can reduce the dimensionality of multi-dimension-al data,and K-means clustering method can detect degradation faults without fault samples.The feasibility of the proposed method is verified by simulation experiments,in which the root mean square error of dynamic update support vector regression is 0.44947,K-means clustering can detect degradation fault samples on the basis of accurate data prediction.The experimental results show that the proposed method can effectively predict and alarm the equipment degradation faults.

关键词

支持向量机回归/主成分降维/K均值聚类分析

Key words

support vector regression/principal components analysis/K-means clustering

分类

电子信息工程

引用本文复制引用

李泳龙,王振东,翟玉婷..基于多融合人工智能的退化故障预后方法[J].舰船电子工程,2023,43(10):61-66,6.

舰船电子工程

OACSTPCD

1627-9730

访问量0
|
下载量0
段落导航相关论文