| 注册
首页|期刊导航|吉林大学学报(理学版)|基于NSST与稀疏先验的遥感图像去模糊方法

基于NSST与稀疏先验的遥感图像去模糊方法

成丽波 董伦 李喆 贾小宁

吉林大学学报(理学版)2024,Vol.62Issue(1):106-115,10.
吉林大学学报(理学版)2024,Vol.62Issue(1):106-115,10.DOI:10.13413/j.cnki.jdxblxb.2022479

基于NSST与稀疏先验的遥感图像去模糊方法

Remote Sensing Image Deblurring Method Based on NSST and Sparse Prior

成丽波 1董伦 1李喆 1贾小宁1

作者信息

  • 1. 长春理工大学数学与统计学院,长春 130022
  • 折叠

摘要

Abstract

Aiming at the blurring problem of remote sensing images,we designed an image restoration algorithm based on non-subsampled shearlet transformation and sparse prior.Firstly,the image recovery model was created by setting the sparse a priori condition of remote sensing image under non-subsampled shearlet decomposition of the high-frequency image.Secondly,the model was solved by using the alternating direction multiplier method.Thirdly,the high-frequency image was restricted by the soft thresholding method,and the guided filtering was conducted in the low-frequency image to maintain the detailed information of the image as much as possible.Finally,the high-frequency image and the low-frequency image were reconstructed,the reconstructed image was subjected to deep denoising by using convolutional neural networks,ultimately restoring a clear image.The deblurring algorithm was compared with H-PNP,GSR,and L2TV algorithms through experiments.The experimental results show that the algorithm can effectively remove blurring and noise in remote sensing images,preserve the edge details of the image,and the objective evaluation indexes are higher than the other three comparative experimental algorithms.

关键词

遥感图像/非下采样剪切波变换/稀疏先验/图像去模糊/交替方向乘子法

Key words

remote sensing image/non-subsampled shearlet transformation/sparse prior/image deblurring/alternating direction multiplier method

分类

信息技术与安全科学

引用本文复制引用

成丽波,董伦,李喆,贾小宁..基于NSST与稀疏先验的遥感图像去模糊方法[J].吉林大学学报(理学版),2024,62(1):106-115,10.

基金项目

国家自然科学基金(批准号:12171054)和吉林省教育厅科学技术研究项目(批准号:JJKH20230788KJ). (批准号:12171054)

吉林大学学报(理学版)

OA北大核心CSTPCD

1671-5489

访问量0
|
下载量0
段落导航相关论文