| 注册
首页|期刊导航|吉林大学学报(理学版)|自动语音识别模型压缩算法综述

自动语音识别模型压缩算法综述

时小虎 袁宇平 吕贵林 常志勇 邹元君

吉林大学学报(理学版)2024,Vol.62Issue(1):122-131,10.
吉林大学学报(理学版)2024,Vol.62Issue(1):122-131,10.DOI:10.13413/j.cnki.jdxblxb.2023058

自动语音识别模型压缩算法综述

Compression Algorithms for Automatic Speech Recognition Models:A Survey

时小虎 1袁宇平 2吕贵林 3常志勇 4邹元君5

作者信息

  • 1. 吉林大学计算机科学与技术学院,长春 130012
  • 2. 吉林大学大数据和网络管理中心,长春 130012
  • 3. 中国第一汽车集团有限公司研发总院智能网联开发院,长春 130011
  • 4. 吉林大学生物与农业工程学院,长春 130022
  • 5. 长春中医药大学医药信息学院,长春 130117
  • 折叠

摘要

Abstract

With the development of deep learning technology,the number of parameters in automatic speech recognition task models was becoming increasingly large,which gradually increased the computing overhead,storage requirements and power consumption of the models,and it was difficult to deploy on resource-constrained devices.Therefore,it was of great value to compress the automatic speech recognition models based on deep learning to reduce the size of the modes while maintaining the original performance as much as possible.Aiming at the above problems,a comprehensive survey was conducted on the main works in this field in recent years,which was summarized as several methods,including knowledge distillation,model quantization,low-rank decomposition,network pruning,parameter sharing and combination models,and conducted a systematic review to provide alternative solutions for the deployment of models on resource-constrained devices.

关键词

语音识别/模型压缩/知识蒸馏/模型量化/低秩分解/网络剪枝/参数共享

Key words

speech recognition/model compression/knowledge distillation/model quantization/low-rank decomposition/network pruning/parameter sharing

分类

信息技术与安全科学

引用本文复制引用

时小虎,袁宇平,吕贵林,常志勇,邹元君..自动语音识别模型压缩算法综述[J].吉林大学学报(理学版),2024,62(1):122-131,10.

基金项目

国家自然科学基金(批准号:62272192)、吉林省科技发展计划项目(批准号:20210201080GX)、吉林省发改委项目(批准号:2021C044-1)和吉林省教育厅科研基金(批准号:JJKH20200871KJ). (批准号:62272192)

吉林大学学报(理学版)

OA北大核心CSTPCD

1671-5489

访问量0
|
下载量0
段落导航相关论文