| 注册
首页|期刊导航|计算机与数字工程|基于深度学习的可扩展Android恶意软件检测和分类方案

基于深度学习的可扩展Android恶意软件检测和分类方案

毛慈伟 刘万里 李荣臻 尹魏昕

计算机与数字工程2023,Vol.51Issue(10):2346-2350,5.
计算机与数字工程2023,Vol.51Issue(10):2346-2350,5.DOI:10.3969/j.issn.1672-9722.2023.10.025

基于深度学习的可扩展Android恶意软件检测和分类方案

Scalable Android Malware Detection and Classification Scheme Based on Deep Learning

毛慈伟 1刘万里 2李荣臻 1尹魏昕1

作者信息

  • 1. 南京理工大学计算机科学与工程学院 南京 210094
  • 2. 南京医科大学附属南京医院(南京市第一医院)消化科 南京 210006
  • 折叠

摘要

Abstract

The Android operating system is currently one of the mainstream operating systems in mobile devices.It has a large user group,so many malicious Android software have also appeared.Every year,researchers will propose some new Android mal-ware analysis frameworks to defend against real-world Android malware applications.This article uses mainstream deep learning al-gorithms,builds a suitable neural network,and adds rectified linear units to realize Android malware detection and classification.Through training the network,this paper finally gets a relatively good malicious detector(binary classifier)and three multi-class classifiers results-based on the static malware binary classifier with 95.74%accuracy and multi-class classifier with 92.98%accura-cy.The dynamic-based malware category multi-class classifier has an accuracy of 84.48%and the dynamic-based malware family multi-class classification has an accuracy of 60.34%.

关键词

Android/恶意软件/深度学习/神经网络/线性修正单元/二分类器/多分类器

Key words

Android/malware/deep learning/neural network/rectified linear unit/binary classifier/multi-class classifier

分类

信息技术与安全科学

引用本文复制引用

毛慈伟,刘万里,李荣臻,尹魏昕..基于深度学习的可扩展Android恶意软件检测和分类方案[J].计算机与数字工程,2023,51(10):2346-2350,5.

基金项目

国家自然科学基金项目(编号:61973161,61991404) (编号:61973161,61991404)

江苏省科技计划项目(编号:BE2021610) (编号:BE2021610)

江苏省教育厅未来网络科研基金项目(编号:FNSRFP-2021-YB-05,FNSRFP-2021-ZD-4)资助. (编号:FNSRFP-2021-YB-05,FNSRFP-2021-ZD-4)

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文