| 注册
首页|期刊导航|计算机与数字工程|一种基于半监督集成学习的软件缺陷预测方法

一种基于半监督集成学习的软件缺陷预测方法

张莹 朱丽娜

计算机与数字工程2023,Vol.51Issue(10):2390-2394,5.
计算机与数字工程2023,Vol.51Issue(10):2390-2394,5.DOI:10.3969/j.issn.1672-9722.2023.10.033

一种基于半监督集成学习的软件缺陷预测方法

A Software Defect Prediction Method Based on Semi Supervised Ensemble Learning

张莹 1朱丽娜2

作者信息

  • 1. 淮北理工学院电子与信息工程学院 淮北 235000
  • 2. 淮北师范大学物理与电子信息学院 淮北 235000||广西财经学院信息与统计学院 南宁 530003
  • 折叠

摘要

Abstract

Software defect prediction is an effective way to improve software quality.In order to solve the problems of unbal-anced distribution and feature redundancy of software defect data,an improved software defect prediction method SSFSAdaBoost(semi supervised software defect prediction based on sampling,feature selection and AdaBoost)based on semi supervised ensem-ble learning is proposed.Firstly,the training set is mixed sampled,then the SMA optimization algorithm is used to select the fea-tures of the sampled training set and test set,and finally the improved semi supervised algorithm SUDAdaBoost is used for integra-tion.Experiments are carried out on three public data sets.The experimental results show that this method is superior to the initial AdaBoost algorithm,and has good performance in alleviating class imbalance problems.

关键词

软件缺陷预测/半监督学习/集成学习/数据采样/特征选择

Key words

software defect prediction/semi supervised learning/ensenmble learning/data sampling/feature selection

分类

信息技术与安全科学

引用本文复制引用

张莹,朱丽娜..一种基于半监督集成学习的软件缺陷预测方法[J].计算机与数字工程,2023,51(10):2390-2394,5.

基金项目

国家自然科学基金项目(编号:61562004,71862003)资助. (编号:61562004,71862003)

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文