| 注册
首页|期刊导航|计算机与现代化|基于自监督学习和数据回放的新闻推荐模型增量学习方法

基于自监督学习和数据回放的新闻推荐模型增量学习方法

林威

计算机与现代化Issue(12):1-6,6.
计算机与现代化Issue(12):1-6,6.DOI:10.3969/j.issn.1006-2475.2023.12.001

基于自监督学习和数据回放的新闻推荐模型增量学习方法

Incremental News Recommendation Method Based on Self-supervised Learning and Data Replay

林威1

作者信息

  • 1. 华南师范大学计算机学院,广东 广州 510631
  • 折叠

摘要

Abstract

Personalized news recommendation technology is important to alleviate information overload and improve user experi-ence.News recommendation models are usually iteratively trained based on fixed data sets.However,in real scenarios,news rec-ommendation models need to constantly learn to adapt to new users and news.Therefore,incremental learning has been proposed to help models perform incremental updates.The main challenge of the incremental learning of news recommendation models is the catastrophic forgetting problem,where a trained model forgets the user preferences it has previously learned.In view of this,this paper proposes SSL-DR,an incremental learning method of news recommendation models based on self-supervised learning and data replay.SSL-DR firstly adds the self-supervised learning task to the news recommendation task to obtain the user′s stable preference,which effectively reduces the problem of catastrophic forgetting.To consolidate the learned knowledge,SSL-DR further implements a sampling strategy based on the user′s click probability scores for candidate news to achieve data replay and transfer the learned knowledge through a knowledge distillation strategy.The experimental results show that,our method can effectively improve the overall recommendation performance of the news recommendation model in the process of incremental training,and significantly alleviate the problem of catastrophic forgetting.

关键词

新闻推荐/增量学习/灾难性遗忘/自监督学习/深度学习

Key words

news recommendation/incremental learning/catastrophic forgetting/self-supervised learning/deep learning

引用本文复制引用

林威..基于自监督学习和数据回放的新闻推荐模型增量学习方法[J].计算机与现代化,2023,(12):1-6,6.

基金项目

国家自然科学基金资助项目(62172166,61772366) (62172166,61772366)

广东省基础与应用基础研究基金资助项目(2022A1515011380) (2022A1515011380)

上海市自然科学基金资助项目(17ZR1445900) (17ZR1445900)

计算机与现代化

OACSTPCD

1006-2475

访问量0
|
下载量0
段落导航相关论文