| 注册
首页|期刊导航|计算机与现代化|基于可学习记忆特征金字塔网络的小样本目标检测

基于可学习记忆特征金字塔网络的小样本目标检测

夏千涵 何胜煌 吴元清 赵乐乐

计算机与现代化Issue(12):7-13,23,8.
计算机与现代化Issue(12):7-13,23,8.DOI:10.3969/j.issn.1006-2475.2023.12.002

基于可学习记忆特征金字塔网络的小样本目标检测

Few-shot Object Detection via Learnable Memory Feature Pyramid Network

夏千涵 1何胜煌 2吴元清 1赵乐乐3

作者信息

  • 1. 广东工业大学计算机学院,广东 广州 510006
  • 2. 上海交通大学自动化学院,上海 200030
  • 3. 威斯康星康考迪亚大学,威斯康星 梅库恩 WI 53097
  • 折叠

摘要

Abstract

At present,it is difficult to obtain the data of some industry application scenarios,and the problem of few shot has be-come an important factor restricting the application and promotion of deep learning technology.In this paper,few shot method is adopted to improve the performance of the model in the absence of data and reduce the dependence of the deep learning model on data,and few-shot object detection via learnable memory feature pyramid network is proposed to retain cleaner multi-scale fea-ture information for classifier prediction.With the help of the adaptive feature fusion module,the network can choose the empha-sis ratio among the features of different levels to maximize the retention of discriminant feature information of different scales.At the same time,we also add a retrospective feature alignment module to alleviate the feature confusion effect introduced by stack-ing feature layers.The experimental results show that the model performance can be effectively improved by overcoming the de-pendence on data,and the improved model can surpass other existing models of the same type in the COCO dataset and VOC da-taset.In particular,when the prior parameter k is set to 5 in VOC dataset,nAP50 increases by 4.8 to 44.7;when the prior param-eter k is set to 30 in COCO dataset,nAP50 increases by 4.0 to 29.4.

关键词

小样本/自适应融合/特征对齐/特征金字塔网络

Key words

few shot/adaptive fusion/feature alignment/feature pyramid network

分类

信息技术与安全科学

引用本文复制引用

夏千涵,何胜煌,吴元清,赵乐乐..基于可学习记忆特征金字塔网络的小样本目标检测[J].计算机与现代化,2023,(12):7-13,23,8.

基金项目

国家自然科学基金资助项目(U22A2065,62003100,62276074) (U22A2065,62003100,62276074)

国家重点发展计划项目(2022YFB4701300) (2022YFB4701300)

广东省基础和应用基础研究基金资助项目(2021B15120058) (2021B15120058)

计算机与现代化

OACSTPCD

1006-2475

访问量0
|
下载量0
段落导航相关论文