| 注册
首页|期刊导航|计算机与现代化|基于双向同态加密的深度联邦图片分类方法

基于双向同态加密的深度联邦图片分类方法

梁天恺 黄康华 刘凯航 兰岚 曾碧

计算机与现代化Issue(12):36-40,47,6.
计算机与现代化Issue(12):36-40,47,6.DOI:10.3969/j.issn.1006-2475.2023.12.007

基于双向同态加密的深度联邦图片分类方法

Deep Federated Image Classification Method Based on Bilateral Homomorphic Encryption

梁天恺 1黄康华 1刘凯航 1兰岚 2曾碧3

作者信息

  • 1. 广州广电运通金融电子股份有限公司研究总院,广东 广州 510000
  • 2. 广发银行信用卡中心资产管理部,广东 佛山 528253
  • 3. 广东工业大学计算机学院,广东 广州 510006
  • 折叠

摘要

Abstract

Concerning the privacy protection and data island problems of traditional machine learning paradigm,combined with deep learning,a deep federated image classification method based on bilateral homomorphic encryption called AFL algorithm is proposed.Firstly,AFL algorithm is a horizontal federated improvement of the VGG neural network.At the same time,a bi-directional Paillier homomorphic encryption mechanism based on the Paillier homomorphic encryption algorithm called Bi-HE mechanism is proposed,which can ensure the privacy and security of the federated system.Secondly,the AFL algorithm pro-poses an adaptive waiting strategy during model aggregation,which can effectively avoids the problem of low aggregation effi-ciency caused by communication blockage.Finally,the experiments using the CIFAR-10 data set have proved that the AFL algo-rithm has better generalization capabilities which can effectively solve the problems of privacy protection and data islands com-pared with the traditional VGG and DenseNet algorithms,and the AFL algorithm is better than the traditional federated learning model in efficiency.

关键词

联邦学习/深度学习/人工智能/计算机视觉

Key words

federated learning/deep learning/artificial intelligence/computer vision

分类

信息技术与安全科学

引用本文复制引用

梁天恺,黄康华,刘凯航,兰岚,曾碧..基于双向同态加密的深度联邦图片分类方法[J].计算机与现代化,2023,(12):36-40,47,6.

基金项目

国家自然科学基金资助项目(62172111,61672169) (62172111,61672169)

广东省自然科学基金资助项目(2021A1515012233) (2021A1515012233)

计算机与现代化

OACSTPCD

1006-2475

访问量6
|
下载量0
段落导航相关论文