| 注册
首页|期刊导航|计算机应用研究|基于乌鸦搜索的隐私保护聚类算法

基于乌鸦搜索的隐私保护聚类算法

夏雪薇 张磊 李晶 邓雨康

计算机应用研究2023,Vol.40Issue(12):3778-3783,6.
计算机应用研究2023,Vol.40Issue(12):3778-3783,6.DOI:10.19734/j.issn.1001-3695.2023.04.0141

基于乌鸦搜索的隐私保护聚类算法

Privacy preserving clustering algorithm based on crow search

夏雪薇 1张磊 1李晶 1邓雨康1

作者信息

  • 1. 佳木斯大学信息电子技术学院,黑龙江佳木斯 154007
  • 折叠

摘要

Abstract

K-means clustering for differential privacy has the problem of poor data utility.This paper proposed a privacy pre-serving clustering algorithm(CS-PCA)based on crow search and silhouette coefficient.On the one hand,the algorithm used silhouette coefficient to evaluate the clustering effect of each cluster in each iteration,added different amounts of noise accor-ding to the clustering effect,and used the idea of clustering merging to reduce the influence of noise on clustering.On the other hand,it used crow search to optimize the selection of initial centroid in the K-means privacy protection clustering algorithm of differential privacy,and prevented the algorithm from falling into local optimum.The experimental results show the CS-PCA algorithm is more effective for clustering,and also is suitable for large-scale data.As a whole,as privacy budgets continue to grow,the F-measure values of CS-PCA algorithm are 0 to 281.3312%and 4.5876%to 470.3704%higher than DP-KCCM and PADC algorithm respectively.With the same privacy budget,CS-PCA algorithm outperforms the comparison algorithm in terms of availability of clustering results.

关键词

乌鸦搜索/轮廓系数/K-means聚类/差分隐私/最优初始质心

Key words

crow search/contour coefficient/K-means clustering/differential privacy/optimal initial centroid

分类

信息技术与安全科学

引用本文复制引用

夏雪薇,张磊,李晶,邓雨康..基于乌鸦搜索的隐私保护聚类算法[J].计算机应用研究,2023,40(12):3778-3783,6.

基金项目

黑龙江省自然科学基金联合引导项目(LH2021F054) (LH2021F054)

黑龙江省省属高等学校基本科研业务费优秀创新团队建设项目(2022-KYYWF-0654) (2022-KYYWF-0654)

黑龙江省哲学社会科学研究规划项目(22GLH084) (22GLH084)

佳木斯大学国家基金培育项目(JMSUGPZR2022-014) (JMSUGPZR2022-014)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文