| 注册
首页|期刊导航|计算机应用研究|特征采样运动信息增强的动作识别方法

特征采样运动信息增强的动作识别方法

罗会兰 包中生

计算机应用研究2023,Vol.40Issue(12):3848-3853,6.
计算机应用研究2023,Vol.40Issue(12):3848-3853,6.DOI:10.19734/j.issn.1001-3695.2023.05.0216

特征采样运动信息增强的动作识别方法

Action recognition method with feature sampling and motion information enhancement

罗会兰 1包中生1

作者信息

  • 1. 江西理工大学信息工程学院,江西赣州 341000
  • 折叠

摘要

Abstract

Based on deep models,video action recognition typically involves sampling the input video and then extracting fea-tures from the obtained video frames to classify actions.Therefore,the video frame sampling method directly affects the effec-tiveness of action recognition.Aiming to sample key and effective features while enhanced the motion information in videos,this paper proposed a LGMeNet based on a feature-level sampling strategy.Firstly,it used a feature-level sampling module to uni-formly select frames with the same motion information from the input data.Secondly,it employed a local motion feature extrac-tion module to compute short-term motion features using a similarity function.Finally,it utilized a LSTM network in the global motion feature extraction module to calculate multi-scale long-term motion features.Experimental evaluations show that LGMeNet achieves accuracies of 97.7%and 56.9%on the UCF101 and Something-SomethingV1 datasets,respectively.The results of this study demonstrate the effectiveness of LGMeNet in enhancing action recognition and highlight its significance for further advancements in related research areas.

关键词

深度学习/动作识别/视频采样/时间建模

Key words

deep learning/action recognition/video sampling/temporal modeling

分类

信息技术与安全科学

引用本文复制引用

罗会兰,包中生..特征采样运动信息增强的动作识别方法[J].计算机应用研究,2023,40(12):3848-3853,6.

基金项目

国家自然科学基金资助项目(61862031) (61862031)

江西省主要学科技术带头人领军人才计划资助项目(20213BCJ22004) (20213BCJ22004)

江西省学位与研究生教育教学改革研究重点项目(JXYJG-2020-120) (JXYJG-2020-120)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文