一种轻量型果园环境果实检测方法OACSTPCD
An environmental fruit detection method for light weight orchard
果园环境下柑橘的快速准确检测是自主采摘机器人作业的关键.针对现有的模型过于冗余、检测速度与精度不平衡等问题,提出一种轻量型果园环境果实检测方法.在YOLOv4 算法的基础上引入焦点损失函数(Focal Loss)来提高模型在二分类检测任务中的负样本挖掘能力,并针对模型参数冗余等问题提出一种优化的模型剪枝方法.试验结果表明:提出的方法在果园环境中柑橘果实数据集检测得到的平均精度均值(mean average precision,MAP)达到94.22%,相较于YOLOv4 模型提高了1.18%,模型参数减小了95.22%,模型尺寸为原来的4.84%,检测速度为原来的4.03 倍.
Rapid and accurate detection of citrus in orchard environment is the key for autonomous picking robot.To solve the problems of excessive redundancy and imbalanced detection speed with accuracy of existing models,the light weight environmental fruit detection method was proposed.Based on YOLOv4,the Focal Loss was introduced to improve the negative sample mining ability of the model in binary classification detection task,and the optimized model pruning method was proposed to solve the problem of model parameter redundancy.The experimental results show that by the proposed method,the MAP of citrus fruit data set in orchard environment reaches 94.22%,which is improved by 1.18%compared with YOLOv4 model.The model parameters are reduced by 95.22%,and the model size is 4.84%of the original size with the detection speed increased by 4.03 times.
商高高;姜锟;韩江义;倪万磊
江苏大学 汽车与交通工程学院, 江苏 镇江 212013
计算机与自动化
柑橘机器视觉目标检测焦点损失函数模型剪枝
citrusmachine visionobject detectionFocal Lossmodel pruning
《江苏大学学报(自然科学版)》 2024 (001)
46-52,59 / 8
江苏省重点研发计划项目(BE2018343);园艺电动拖拉机研发项目(BE2017333)
评论