| 注册
首页|期刊导航|交通信息与安全|基于集合经验模态分解降噪和优化LSTM的道路交通事故预测

基于集合经验模态分解降噪和优化LSTM的道路交通事故预测

刘清梅 万明 严利鑫 郭军华

交通信息与安全2023,Vol.41Issue(5):12-23,12.
交通信息与安全2023,Vol.41Issue(5):12-23,12.DOI:10.3963/j.jssn.1674-4861.2023.05.002

基于集合经验模态分解降噪和优化LSTM的道路交通事故预测

A Method for Predicting Traffic Accidents Based on an Ensemble Empirical Mode Decomposition and an Optimized LSTM Model

刘清梅 1万明 2严利鑫 2郭军华2

作者信息

  • 1. 华东交通大学交通运输工程学院 南昌 330013||南昌交通学院交通运输学院 南昌 330013
  • 2. 华东交通大学交通运输工程学院 南昌 330013
  • 折叠

摘要

Abstract

Accurate prediction of road traffic accidents is essential to improve traffic safety effectively.Due to the frequent non-linear,fluctuating,and nonperiodic characteristics of accident data,existing algorithms have the prob-lem of poor prediction performance.Therefore,a method for traffic prediction that uses a long short-term memory network(LSTM)combined with ensemble empirical mode decomposition(EEMD)and particle swarm optimiza-tion(PSO)is proposed.Based on a single model,the EEMD is first used to break down the noise of accident data and obtain multiple subsequences and a residual.Based on LSTM optimized by PSO,the temporal feature infor-mation extracted from the data is predicted under the optimal network structure of LSTM.Then,the prediction re-sults of each subsequence and residual are summed to obtain the final prediction result.The results show that,compared with the EMD-PSO-LSTM,PSO-LSTM,EEMD-LSTM,and LSTM,the ermse of EEMD-PSO-LSTM is reduced by 8.7%,48.3%,53.1%,and 57.6%,respectively.Meanwhile,the emape is reduced by 12.4%,36.9%,50.6%,and 61.2%,respectively.Compared with the PSO-LSTM,the ermse of the EEMD-PSO-LSTM is reduced by 60.2%,the emape is reduced by 12.4%,and the r2 is increased by 0.616 5.The PSO Introduced to optimize neural networks can help improve prediction performance.Compared with the EEMD-LSTM,the ermse of the EEMD-PSO-LSTM is reduced by 53.1%,the emape is diminished by 50.6%,and the r2 is climbed to 0.807 8.The re-sults can improve the prediction accuracy of traffic accidents and help relevant departments effectively improve road traffic safety.

关键词

交通安全/事故预测/长短时记忆神经网络/粒子群算法/集合经验模态分解

Key words

traffic safety/accident prediction/long short-term memory neural network/particle swarm algorithm/ensemble empirical mode decomposition

分类

交通工程

引用本文复制引用

刘清梅,万明,严利鑫,郭军华..基于集合经验模态分解降噪和优化LSTM的道路交通事故预测[J].交通信息与安全,2023,41(5):12-23,12.

基金项目

国家自然科学基金项目(52162049)、赣鄱俊才支持计划-主要学科学术和技术带头人培养项目——青年人才(20232BCJ23012)、江西省研究生创新专项(YC2021-S457)资助 (52162049)

交通信息与安全

OA北大核心CSCDCSTPCD

1674-4861

访问量0
|
下载量0
段落导航相关论文