| 注册
首页|期刊导航|机械科学与技术|不确定检测环境下强化学习覆盖路径规划研究

不确定检测环境下强化学习覆盖路径规划研究

李彦征 刘银华 赵文政 孙芮

机械科学与技术2024,Vol.43Issue(1):9-15,7.
机械科学与技术2024,Vol.43Issue(1):9-15,7.DOI:10.13433/j.cnki.1003-8728.20220203

不确定检测环境下强化学习覆盖路径规划研究

A Coverage Path Planning Method with Reinforcement Learning Considering Manufacturing Process Uncertainty

李彦征 1刘银华 1赵文政 1孙芮2

作者信息

  • 1. 上海理工大学 机械工程学院,上海 200093
  • 2. 上海交通大学 机械与动力工程学院,上海 200240
  • 折叠

摘要

Abstract

The robotic scanning system has been widely used in the quality inspection field of automobiles,especially the studies of viewpoint sampling and path planning based on the genetic optimization algorithm in the model-based environment.However,the path planning results based on the nominal models are difficult to apply to the actual inspection environment.To address this problem,a viewpoint adaptive sampling method is proposed based on an improved Monte Carlo tree search,and industrial robot motion trajectories are planned online.Finally,the case of the car door inner panel was used to illustrate the effectiveness of the method.

关键词

光学检测/覆盖路径规划/制造误差/运动规划

Key words

optical inspection/coverage path planning/manufacturing deviation/motion planning

分类

交通工程

引用本文复制引用

李彦征,刘银华,赵文政,孙芮..不确定检测环境下强化学习覆盖路径规划研究[J].机械科学与技术,2024,43(1):9-15,7.

基金项目

国家自然科学基金项目(51875362)、上海市自然科学基金项目(21ZR1444500)及机械系统与振动国家重点实验开放基金项目(MSV202010) (51875362)

机械科学与技术

OA北大核心CSTPCD

1003-8728

访问量0
|
下载量0
段落导航相关论文