| 注册
首页|期刊导航|机械科学与技术|机器人曲面零件抛光粗糙度预测模型研究

机器人曲面零件抛光粗糙度预测模型研究

韩天勇 陈满意 朱义虎 朱自文

机械科学与技术2024,Vol.43Issue(1):73-80,8.
机械科学与技术2024,Vol.43Issue(1):73-80,8.DOI:10.13433/j.cnki.1003-8728.20220201

机器人曲面零件抛光粗糙度预测模型研究

Research on Polishing Roughness Prediction Model of Robot Curved Surface Parts

韩天勇 1陈满意 1朱义虎 1朱自文1

作者信息

  • 1. 武汉理工大学 机电工程学院,武汉 430070
  • 折叠

摘要

Abstract

In order to improve the surface quality of polished surface parts,a roughness model should be established to select reasonable process parameters.Therefore,a modeling method based on support vector machine(SVM)is proposed in this paper.Through researching the robot polishing process and polishing process parameters,the tool rotation speed,polishing force,row spacing,robot feed speed,etc.are used as input variables,and roughness is used as output variables.Combined with particle swarm optimization(PSO)and SVM,a prediction model of curved surface parts polishing roughness was established,and compared with the regression analysis method.The experimental results show that the prediction error of the regression analysis method is relatively large,and the prediction model of polishing roughness of curved surface parts established based on SVM is highly consistent with the experimental results.The average relative error between the experimental measured value and the predicted value is 2.84%.The optimal combination of process parameters is obtained by optimization,and the model provides a basis for rational selection of polishing process parameters.

关键词

机器人抛光/粒子群算法/支持向量机/粗糙度预测/抛光工艺参数优化

Key words

robot polishing/particle swarm optimization/support vector machine/roughness prediction/polishing process parameter optimization

分类

信息技术与安全科学

引用本文复制引用

韩天勇,陈满意,朱义虎,朱自文..机器人曲面零件抛光粗糙度预测模型研究[J].机械科学与技术,2024,43(1):73-80,8.

机械科学与技术

OA北大核心CSTPCD

1003-8728

访问量0
|
下载量0
段落导航相关论文