首页|期刊导航|机械科学与技术|机器人曲面零件抛光粗糙度预测模型研究

机器人曲面零件抛光粗糙度预测模型研究OACSTPCD

Research on Polishing Roughness Prediction Model of Robot Curved Surface Parts

中文摘要英文摘要

为提高抛光后曲面零件的表面质量,应建立粗糙度模型选取合理工艺参数,因此本文提出一种基于支持向量机(SVM)的建模方法.通过对机器人抛光过程及抛光工艺参数的研究,将刀具转速、抛光力、行间距、机器人进给速度等作为输入量,粗糙度作为输出量.结合粒子群算法(PSO)与SVM建立曲面零件抛光粗糙度预测模型,并与回归分析方法作对比.试验结果表明:回归分析方法的预测误差较大,而基于SVM建立的曲面零件抛光粗糙度预测模型与试验结果高度吻合,试验测量值与预测值间的…查看全部>>

In order to improve the surface quality of polished surface parts,a roughness model should be established to select reasonable process parameters.Therefore,a modeling method based on support vector machine(SVM)is proposed in this paper.Through researching the robot polishing process and polishing process parameters,the tool rotation speed,polishing force,row spacing,robot feed speed,etc.are used as input variables,and roughness is used as output variables.Co…查看全部>>

韩天勇;陈满意;朱义虎;朱自文

武汉理工大学 机电工程学院,武汉 430070武汉理工大学 机电工程学院,武汉 430070武汉理工大学 机电工程学院,武汉 430070武汉理工大学 机电工程学院,武汉 430070

计算机与自动化

机器人抛光粒子群算法支持向量机粗糙度预测抛光工艺参数优化

robot polishingparticle swarm optimizationsupport vector machineroughness predictionpolishing process parameter optimization

《机械科学与技术》 2024 (1)

73-80,8

10.13433/j.cnki.1003-8728.20220201

评论

您当前未登录!去登录点击加载更多...