| 注册
首页|期刊导航|机械科学与技术|考虑轮胎侧偏刚度在线更新的智能电动汽车状态估计

考虑轮胎侧偏刚度在线更新的智能电动汽车状态估计

付越胜 李韶华 王桂洋

机械科学与技术2024,Vol.43Issue(1):150-158,9.
机械科学与技术2024,Vol.43Issue(1):150-158,9.DOI:10.13433/j.cnki.1003-8728.20220190

考虑轮胎侧偏刚度在线更新的智能电动汽车状态估计

State Estimation of Intelligent Electric Vehicle Considering Online Updating of Tire Cornering Stiffness

付越胜 1李韶华 1王桂洋1

作者信息

  • 1. 石家庄铁道大学 省部共建交通工程结构力学行为与系统安全国家重点实验室,石家庄 050043||石家庄铁道大学 机械工程学院,石家庄 050043
  • 折叠

摘要

Abstract

The real-time and accurate estimation of vehicle states is the premise of vehicle intelligence development.However,the existing researches usually ignore the time-varying characteristics of tire cornering stiffness,and introducing linear tire model into vehicle model seriously affects the estimation accuracy of vehicle states under extreme conditions.An algorithm for estimating intelligent electric vehicle longitudinal speed,yaw rate and sideslip angle of vehicle mass center with tire cornering stiffness updated online is proposed.Based on the fuzzy adaptive extended Kalman filter(FAEKF),the vehicle state estimation model is established.The fuzzy controller is used to adjust the Kalman gain matrix including the covariance of observation noise in EKF algorithm in real time to achieve the adaptive effect of the algorithm.Using the forgetting-factor recursive least square method(FFRLS),the estimation model of tire cornering stiffness is established.A new FAEKF+FFRLS algorithm is proposed by combining the two algorithms in an embedded way,which can better realize the joint estimation and mutual correction of states and parameters.The algorithm is verified by co-simulation Trucksim and MATLAB/Simulink.The results show that compared with the standard EKF algorithm,the proposed state estimation algorithm has higher accuracy,better stability and robustness.

关键词

智能汽车/状态估计/递推最小二乘法/扩展卡尔曼滤波/模糊控制

Key words

intelligent electric vehicle/state estimation/recursive least square method/extended Kalman filter/fuzzy control

分类

交通工程

引用本文复制引用

付越胜,李韶华,王桂洋..考虑轮胎侧偏刚度在线更新的智能电动汽车状态估计[J].机械科学与技术,2024,43(1):150-158,9.

基金项目

国家自然科学基金项目(11972238) (11972238)

机械科学与技术

OA北大核心CSTPCD

1003-8728

访问量0
|
下载量0
段落导航相关论文