| 注册
首页|期刊导航|机械科学与技术|含网络攻击的智能网联汽车路径跟踪状态估计与控制

含网络攻击的智能网联汽车路径跟踪状态估计与控制

易星 曹青松

机械科学与技术2024,Vol.43Issue(1):159-165,7.
机械科学与技术2024,Vol.43Issue(1):159-165,7.DOI:10.13433/j.cnki.1003-8728.20220205

含网络攻击的智能网联汽车路径跟踪状态估计与控制

State Estimation and Control for Path Following of Intelligent Connected Vehicle with Network Attack

易星 1曹青松2

作者信息

  • 1. 江西科技学院 协同创新中心,南昌 330098
  • 2. 江西科技学院 人工智能学院,南昌 330098
  • 折叠

摘要

Abstract

Intelligent connected vehicle has the characteristics of CPS,vulnerable to the adverse impact of network attack in operation,then resulting in abnormal communication data interaction,and reducing driving safety.The path following dynamics model of intelligent connected vehicle and 2-DOF vehicle handling dynamics model are established.The information architecture for path following control system of vehicles is analyzed.Considering that there is a network attack in the system response,the state space equation of continuous system was discretized.A recursive state estimator based on linear quadratic estimation is designed.The influence of network attack on path following of intelligent connected vehicle,and the effect and robustness of state estimator on control for path following of vehicle under network attack are simulated.The results show that network attack will make the path following effect of intelligent connected vehicle worse.The state estimator can effectively improve the negative influence of network attack on vehicle tracking control.The state estimator shows good robustness with the difference of network attack degree λ and initial value of covariance P.This study can ensure the reliable interaction of data and information for intelligent connected vehicle under network attack,which is beneficial to improve the tracking performance of intelligent connected vehicle.

关键词

智能网联汽车/网络攻击/路径跟踪/状态估计/信息物理系统

Key words

intelligent connected vehicle/network attack/path following/state estimation/CPS

分类

交通运输

引用本文复制引用

易星,曹青松..含网络攻击的智能网联汽车路径跟踪状态估计与控制[J].机械科学与技术,2024,43(1):159-165,7.

基金项目

国家自然科学基金项目(51765021)、江西省科技厅重点研发计划项目(20181BBE50012)及江西省教育厅科技项目(GJJ212007) (51765021)

机械科学与技术

OACSTPCD

1003-8728

访问量0
|
下载量0
段落导航相关论文