| 注册
首页|期刊导航|机械与电子|基于机器学习的风电机组机械传动系统故障诊断研究

基于机器学习的风电机组机械传动系统故障诊断研究

宾世杨 张振 唐俊杰 唐惜春

机械与电子2024,Vol.42Issue(1):11-15,5.
机械与电子2024,Vol.42Issue(1):11-15,5.

基于机器学习的风电机组机械传动系统故障诊断研究

Research on Fault Diagnosis of Wind Turbine Mechanical Transmission System Based on Machine Learning

宾世杨 1张振 1唐俊杰 1唐惜春1

作者信息

  • 1. 国家电投集团广西兴安风电有限公司,广西 桂林 541300
  • 折叠

摘要

Abstract

In order to accurately diagnose the faults of the mechanical transmission system of wind tur-bines,a fault diagnosis method of the mechanical transmission system of wind turbines based on machine learning is proposed.The vibration signal of the mechanical transmission system of the wind turbine is de-composed by the EMD method,and the IMF at different frequencies is obtained.After comparative analy-sis,the IMF component that can describe the characteristic frequency of the fault is obtained,and the fault signal is obtained through reconstruction and autocorrelation analysis is used to remove noise from faulty signals.The fault features of the mechanical transmission system of wind turbines are extracted through the Lasso regularized self-encoding neural network in machine learning,and the improved particle swarm algorithm is used to optimize the least squares support vector machine,and a classifier is constructed.The extracted samples are input into the classifier to accomplish fault diagnosis of wind turbine mechanical transmission systems.The experimental test proves that the proposed method can complete the fault diag-nosis and processing with high efficiency and high precision.

关键词

机器学习/风电机组/机械传动系统故障诊断/EMD

Key words

machine learning/wind turbines/mechanical transmission system fault diagnosis/EMD

分类

信息技术与安全科学

引用本文复制引用

宾世杨,张振,唐俊杰,唐惜春..基于机器学习的风电机组机械传动系统故障诊断研究[J].机械与电子,2024,42(1):11-15,5.

基金项目

广西电网有限责任公司科技项目(040600KK52100012) (040600KK52100012)

机械与电子

OACSTPCD

1001-2257

访问量0
|
下载量0
段落导航相关论文