| 注册
首页|期刊导航|机械与电子|基于改进Stacking模型的铁路信号设备故障率预测

基于改进Stacking模型的铁路信号设备故障率预测

袁武民 邢建平 杨栋

机械与电子2024,Vol.42Issue(1):41-46,6.
机械与电子2024,Vol.42Issue(1):41-46,6.

基于改进Stacking模型的铁路信号设备故障率预测

Prediction of Railway Signal Equipment Failure Rate Based on Improved Stacking Model

袁武民 1邢建平 2杨栋3

作者信息

  • 1. 兰州深蓝图形技术有限公司,甘肃 兰州 730010
  • 2. 中国铁路兰州局集团有限公司兰州高铁基础设施段,甘肃 兰州 730050
  • 3. 中国铁路兰州局集团有限公司银川电务段,宁夏银川 750021
  • 折叠

摘要

Abstract

To address the problems oflarge errors and low accuracy with single machine learning mod-els for predicting the failure rate of equipment,a prediction method based on improved Stacking fusion model is proposed.The basic Stacking fusion model is constructed by selecting XGBoost,LightGBM,Cat-Boost and the logistic regression model.On this basis,the Prophet time series prediction model is intro-duced,and the features extracted by the Prophet model are fused with the basic Stacking model level by level to construct the improved Stacking-Prophet prediction model.Finally,the validity of the prediction model is verified by taking the signal equipment data of a unit as an example.The experimental result shows that compared with the single prediction model,the Stacking-Prophet prediction model reduces the root mean square error(RMSE)by 94.14% on average,and the prediction accuracy is greatly improved.It is of a certain reference value for equipment operation and maintenance.

关键词

机器学习/融合模型/时间序列/铁路信号设备/故障率预测

Key words

machine learning/fusion model/time series/railroad signal equipment/failure rate prediction

分类

交通工程

引用本文复制引用

袁武民,邢建平,杨栋..基于改进Stacking模型的铁路信号设备故障率预测[J].机械与电子,2024,42(1):41-46,6.

基金项目

甘肃省中小企业创新基金项目(22CX3GA029) (22CX3GA029)

机械与电子

OACSTPCD

1001-2257

访问量0
|
下载量0
段落导航相关论文