| 注册
首页|期刊导航|空间科学学报|基于U-Net的海洋锋智能检测模型

基于U-Net的海洋锋智能检测模型

任诗鹤 韩焱红 李竞时 赵亚明 匡晓迪 吴湘玉 杨晓峰

空间科学学报2023,Vol.43Issue(6):1091-1099,9.
空间科学学报2023,Vol.43Issue(6):1091-1099,9.DOI:10.11728/cjss2023.06.2023-0097

基于U-Net的海洋锋智能检测模型

Oceanic Front Detection Model Based on U-Net Network

任诗鹤 1韩焱红 2李竞时 3赵亚明 4匡晓迪 3吴湘玉 3杨晓峰5

作者信息

  • 1. 国家海洋环境预报中心 自然资源部海洋灾害预报技术重点实验室 北京 100081||中国科学院空天信息创新研究院 遥感科学国家重点实验室 北京 100101
  • 2. 中国气象局公共气象服务中心 北京 100081
  • 3. 国家海洋环境预报中心 自然资源部海洋灾害预报技术重点实验室 北京 100081
  • 4. 北京市5111信箱 北京 100094
  • 5. 中国科学院空天信息创新研究院 遥感科学国家重点实验室 北京 100101
  • 折叠

摘要

Abstract

As a boundary of two water masses with different properties,oceanic fronts have impor-tant influences on many fields such as fishery,marine military and environmental protection.How to quickly and accurately implement automatic detection and identification of ocean front is of great scien-tific significance for ocean monitoring and forecasting.In this paper,the deep learning image segmenta-tion network is combined with the method of extracting frontal features,and the detection models of frontal area and frontal line are established by using U-Net architecture.Meanwhile,the residual unit is used to improve the feature extraction network in the processes of encoding and decoding.The results show that the deep learning frontal detection model can accurately extract the features of frontal area and frontal line.The Dice coefficients reach 0.92 and 0.97 respectively,achieving a good detection perfor-mance.In this paper,the model is trained by the sample data of different frontal thresholds.The com-parison results show that the accuracy of model is significantly improved after the threshold of sample set is reduced.

关键词

海洋锋/海表温度/深度学习/U-Net

Key words

Oceanic fronts/Sea surface temperature/Deep learning/U-Net

分类

海洋科学

引用本文复制引用

任诗鹤,韩焱红,李竞时,赵亚明,匡晓迪,吴湘玉,杨晓峰..基于U-Net的海洋锋智能检测模型[J].空间科学学报,2023,43(6):1091-1099,9.

基金项目

国家自然科学基金项目(41806003),遥感科学国家重点实验室开放基金项目(OFSLRSS202219)和国家重大科技基础设施项目"地球系统数值模拟装置"共同资助 (41806003)

空间科学学报

OA北大核心CSCDCSTPCD

0254-6124

访问量0
|
下载量0
段落导航相关论文