| 注册
首页|期刊导航|南京林业大学学报(自然科学版)|基于随机森林协同克里金法的区域森林地上生物量制图——以粤北森林为例

基于随机森林协同克里金法的区域森林地上生物量制图——以粤北森林为例

周友锋 谢秉楼 李明诗

南京林业大学学报(自然科学版)2024,Vol.48Issue(1):169-178,10.
南京林业大学学报(自然科学版)2024,Vol.48Issue(1):169-178,10.DOI:10.12302/j.issn.1000-2006.202202015

基于随机森林协同克里金法的区域森林地上生物量制图——以粤北森林为例

Mapping regional forest aboveground biomass from random forest Co-Kriging approach:a case study from north Guangdong

周友锋 1谢秉楼 2李明诗1

作者信息

  • 1. 南京林业大学林草学院、水土保持学院,南方现代林业协同创新中心,江苏 南京 210037
  • 2. 浙江省森林资源监测中心,浙江 杭州 310020
  • 折叠

摘要

Abstract

[Objective]Forest aboveground biomass(AGB)is an important indicator for evaluating forest ecosystem health status and carbon sink potential.Accurate and quick mapping regional forest AGB has become intensively researched in forest ecosystem status assessment and global climate change studies in recent years.The major objective of this study was to develop a framework for improving the mapping accuracy of AGB in a subtropical forested area with complex terrain.[Method]Spectral features,textural indices,backscattering coefficients,and topographical variables were derived from Landsat 5 TM,ALOS-1 PALSAR-1 data and STRM DEM.Next,in tandem with national forest inventory plot measurements,a random forest/Co-Kriging framework that combines the advantages of random forest(RF)and a geostatistical approach was proposed to map AGB in northern Guangdong Province.[Result]The experimental results showed that the ordinary Kriging(OK)and Co-Kriging(CK)were able to predict the distribution of the RF-predicted AGB residuals.The predicted structured components of the residuals adding onto the RF predictions could improve the mapping accuracy of AGB to some extent.After the validation of the independent 20%dataset,the determination coefficient between the predictions and the observations increased from 0.46(RF)to 0.51(RFOK)and to 0.57(RFCK).The root mean square error decreased from 32.48 to 31.58 and to 29.80 t/hm2 accordingly.The mean absolute error decreased from 27.28 to 26.63 and to 25.12 t/hm2.Overall,co-Kriging,which considers elevation as a co-variable,was better than ordinary Kriging in predicting AGB residuals.[Conclusion]The RFCK framework provides an accurate and reliable method to map subtropical AGB with complex topography.The resulting AGB maps contribute to targeted forest resource management and promote forest carbon sequestration and sustainable forest management under global warming scenarios.

关键词

森林地上生物量/随机森林/协同克里金/ALOS-1 PALSAR-1/Landsat 5 TM/国家森林资源连续清查/

Key words

forest aboveground biomass/random forest/Co-Kriging/ALOS-1 PALSAR-1/Landsat 5 TM/national forest inventory/north Guangdong Province

分类

农业科技

引用本文复制引用

周友锋,谢秉楼,李明诗..基于随机森林协同克里金法的区域森林地上生物量制图——以粤北森林为例[J].南京林业大学学报(自然科学版),2024,48(1):169-178,10.

基金项目

国家自然科学基金项目(31670552). (31670552)

南京林业大学学报(自然科学版)

OA北大核心CSTPCD

1000-2006

访问量0
|
下载量0
段落导航相关论文