基于改进YOLOv5m的电动车骑行者头盔与车牌检测方法OACSTPCD
Helmet and license plate detection for electric bike rider based on improved YOLOv5m
电动车上路必须佩戴安全头盔已成为交管部门的强制性规定.为了能自动检测出电动车骑行者的头盔佩戴情况,提出一种基于改进的YOLOv5m模型的头盔与车牌检测方法,在检测出骑行者未佩戴头盔的同时还能检测出电动车车牌.模型使用自建电动车骑行者头盔与车牌检测数据集进行训练,用DIOU损失函数代替GIOU损失函数,DIOU_NMS代替加权NMS,增强模型对密集骑行场景的识别能力.在Backone部位与预测中小目标的Neck部位加入ECA注意力机制,使得模型对中小目标的识别率有所提高;用K-means 算法对锚框尺寸重新进行聚类.最后,改进Mosaic数据增强方式.实验结果表明:改进的 YOLOv5m电动车骑行者头盔与车牌检测模型的 mAP 为92.7%,较原 YOLOv5m 模型提高 2.15个百分点,较 YOLOv4-tiny、Faster RCNN模型分别提高 5.7 个百分点与 6.9 个百分点.改进后的 YOLOv5m 模型能有效提高对头盔与车牌的识别率.
It has become a mandatory requirement for electric bike riders to wears helmet on riding.To automatically check if the electric bike rider wears helmet,a helmet and license plate detection approach based on improved YOLOv5m model is herein proposed,which can locate and recognize the license plate of the unhelmeted rider,so as to track down the violators.The model is trained with self-built dataset,uses DIOU loss function instead of GIOU loss function,and uses DIOU_NMS to replace weighted NMS so as to enhance the recognition ability for dense cycling scenes.Meanwhile,the ECA attention mechanism is added to the Backone and the Neck parts to im-prove the recognition accuracy for small-and medium-sized targets.Then,the K-means algorithm is used to re-cluster the anchor frame size.Finally,the Mosaic data enhancement method is improved.The experimental results show that the mAP of the proposed approach is 92.7%,which is 2.15,5.7,and 6.9 percentage points higher than the original YOLOv5m,YOLOv4 tiny,and Faster RCNN,respectively.It can be concluded that the improved YOLOv5m model can accurately recognize rider's helmet and electric bike's license plate.
庄建军;叶振兴
南京信息工程大学 电子与信息工程学院,南京,210044
计算机与自动化
头盔检测车牌检测YOLOv5m注意力机制DIOUK-means算法改进Mo-saic数据增强
helmet detectionlicense plate detectionYOLOv5mattention mechanismDIOUK-means algorithmimproved Mosaic data enhancement
《南京信息工程大学学报》 2024 (001)
1-10 / 10
国家重点研发计划(2021YFE0105500);国家自然科学基金(62171228)
评论