|国家科技期刊平台
首页|期刊导航|南京信息工程大学学报|基于改进YOLOv5s的交通标识检测算法

基于改进YOLOv5s的交通标识检测算法OACSTPCD

Traffic sign detection based on improved YOLOv5s

中文摘要英文摘要

针对交通标识在图像中占比小、检测精度低且周围环境复杂等问题,提出一种基于改进YOLOv5s的算法.首先,在主干网络部分添加注意力机制ECA(Ef-ficient Channel Attention,高效通道注意力),增强网络的特征提取能力,有效解决了周围环境复杂的问题;其次,提出HASPP(Hybrid Atrous Spatial Pyramid Pooling,混合空洞空间金字塔池化),增强了网络结合上下文的能力;最后,修改网络中的Neck结构,使高层特征与底层特征有效融合,同时避免了跨卷积层造成的信息丢失.实验结果表明,改进后的算法在交通标识数据集上取得了 94.4%的平均检测精度、74.1%的召回率以及94.0%的精确率,较原始算法分别提升了 3.7、2.8、3.4 个百分点.

An algorithm based on improved YOLOv5s is proposed to address the problems of small percentage of traffic signs in the image,low detection accuracy and complex surrounding environment.First,the attention mecha-nism of ECA(Efficient Channel Attention)is added to the backbone network part to enhance the feature extraction ability of the network and effectively solve the problem of complex surrounding environment.Second,the HASPP(Hybrid Atrous Spatial Pyramid Pooling)is proposed,which enhances the network's ability to combine context.Fi-nally,the neck structure in the network is modified to allow efficient fusion of high level features with underlying features while avoiding information loss across convolutional layers.Experimental results show that the improved al-gorithm achieves an average detection accuracy of 94.4%,a recall rate of 74.1%and an accuracy rate of 94.0%on the traffic signage dataset,which were 3.7,2.8,and 3.4 percentage points higher than the original algorithm,re-spectively.

李孟浩;袁三男

上海电力大学 电子与信息工程学院,上海, 201306

计算机与自动化

交通标识检测小目标检测YOLOv5s注意力机制特征提取混合空洞空间金字塔池化

traffic sign detectionsmall target detectionYOLOv5sattention mechanismfeature extractionhybrid atrous spatial pyramid pooling(HASPP)

《南京信息工程大学学报》 2024 (001)

11-19 / 9

10.13878/j.cnki.jnuist.20230502002

评论