|国家科技期刊平台
首页|期刊导航|科技创新与应用|一种基于K-means的神经网络数据集回归预测算法

一种基于K-means的神经网络数据集回归预测算法OA

中文摘要英文摘要

在智能电网研究领域的高维数据回归分析和预测模型中,传统的统计学模型不能平衡不同维度之间信息价值,影响数据集的预测有效性.为解决上述问题,提出一种基于K-means的神经网络数据集回归预测算法.首先,在特征层面上,多层循环神经网络提取不同维度的数据特征并训练响应,然后,在算法层面上,通过K-means的分类器模型依照数据的维度特征分类并融合循环神经网络(Recurrent Neural Network,RNN)的特征响应,再对输出响应的数据集构建组合预测模型,从而提高预测算法的可靠性.在公开的回归数据集上进行测试.实验测试的结果表明,与门控循环算法(Gated Recurrent Unit,GRU)相比降低了 14.45%的平均绝对误差值.

The standard statistical model cannot balance the information value across various dimensions which has an impact on the predictive power of data sets in the regression analysis and prediction model of high-dimensional data.This paper suggests a K-means regression prediction model based neural network data set.Firstly,at the feature level,the multi-layer RNN neural network extracts data features from several dimensions and trains the response.Secondly,the data is classified using the K-means classifier model at the algorithm level,which integrates the feature response of a Recurrent Neural Network(RNN)neural network,and a combined prediction model is built for the data set of the output response in order to increase the predictability of the algorithm.Finally,in such measure of regression analysis of time series data with multi-dimensional features,the experimental results of the UCI regression analysis data set compared to the Gated Recurrent Unit(GRU)algorithm demonstrate that this approach further enhances the definition of model prediction by 14.45 percent.

孙梦觉;田园;汤吕;李珗

云南电网有限责任公司信息中心,昆明 650000昆明云电同方有限责任公司,昆明 650000

计算机与自动化

智能电网回归分析神经网络K-means分类器多维特征

Smart gridregression analysisneural networkK-means classifiermultidimensional features

《科技创新与应用》 2024 (003)

74-80 / 7

云南电网有限责任公司信息中心研发基金(059300202021030302YY00012)

10.19981/j.CN23-1581/G3.2024.03.018

评论