| 注册
首页|期刊导航|水道港口|基于深度神经网络的群桩局部冲刷深度预测

基于深度神经网络的群桩局部冲刷深度预测

张丽萍 梁丙臣 张黎邦 张嶔 杨博

水道港口2023,Vol.44Issue(5):747-753,810,8.
水道港口2023,Vol.44Issue(5):747-753,810,8.

基于深度神经网络的群桩局部冲刷深度预测

Local scour depth prediction of pile group based on deep neural network

张丽萍 1梁丙臣 1张黎邦 2张嶔 1杨博1

作者信息

  • 1. 中国海洋大学,青岛 266100
  • 2. 山东省海洋工程重点实验室,青岛 266100
  • 折叠

摘要

Abstract

The study of local scour of pile group is crucial to ensure the stability of marine structure foundation.The calculated values of scour depth of pile group obtained by using current codes and empirical formulas are too conservative and too discrete.The depth neural network has strong nonlinear mapping capability.A depth neural network model was established using the neural network and experimental data from previous studies to predict the scour depth and perform sensitivity analysis on the results.It is shown by the analysis that the predicted scour depth of the model established in this paper fits well with the actual test values,and the feasibility and effectiveness of the scour depth neural network model are demonstrated.The theoretical basis for the depth of landfill and later protection of the marine engineering buildings supported by pile groups can be provided,and significant engineering and theoretical significance are attached to it.

关键词

深度神经网络/群桩/冲刷深度/ANN预测/深度学习/TensorFlow应用

Key words

deep neural network/pile group/scour depth/ANN prediction/deep learning/TensorFlow application

分类

交通工程

引用本文复制引用

张丽萍,梁丙臣,张黎邦,张嶔,杨博..基于深度神经网络的群桩局部冲刷深度预测[J].水道港口,2023,44(5):747-753,810,8.

基金项目

国家自然科学基金项目(51739010) (51739010)

水道港口

OACSTPCD

1005-8443

访问量0
|
下载量0
段落导航相关论文