| 注册
首页|期刊导航|宿州学院学报|基于SPD多尺度输入的ST-MASA的肺炎智能检测模型

基于SPD多尺度输入的ST-MASA的肺炎智能检测模型

李芳芳 束建华 阚峻岭 殷云霞 孙大勇 马春

宿州学院学报2023,Vol.38Issue(12):11-17,7.
宿州学院学报2023,Vol.38Issue(12):11-17,7.DOI:10.3969/j.issn.1673-2006.2023.12.003

基于SPD多尺度输入的ST-MASA的肺炎智能检测模型

Intelligent Pneumonia Detection Model of ST-MASA Based on SPD Multi-scale-input

李芳芳 1束建华 1阚峻岭 1殷云霞 1孙大勇 1马春1

作者信息

  • 1. 安徽中医药大学医药信息工程学院,安徽合肥,230012
  • 折叠

摘要

Abstract

The clinical diagnosis results based on lung X-rays provide important evidence in the COVID-19 pneu-monia diagnosis process and for some other pneumonia.However,due to the similarity of the lesions among many types of pneumonia displayed by X-rays,and due to the huge amount of X-ray film reading of a doctor's daily work,there are some problems such as misdiagnosis,missed diagnosis and time consumption in traditional X-ray film rea-ding and identification.Therefore,an intelligent pneumonia detection model of ST-MASA(Swin Transformer with Multi-Head Axial-Self-Attention)that integrates the Spatial pyramid decomposition(SPD)module for multi-scale in-put is proposed for the automatic classification of COVID-19 and multi-type pneumonia.The model will also be able to automatically focus on the discrimination information and multi-scale characteristics of pneumonia lesions,and further better classify COVID-19,Lung_Opacity,non-covid viral pneumonia and Normal X-ray films so as to better help radiologists to carry out medical diagnosis work.The experimental results show that the proposed model is supe-rior to the classical network models ResNet 50,ResNet 101,Inception net-V3 and Swin Transformer in terms of ac-curacy,recall rate and F1-Measure.

关键词

肺炎智能检测/空间金字塔分解/多尺度输入/多头轴向自注意力机制/Swin Transformer

Key words

Intelligent detection of pneumonia/Spatial pyramid decomposition/Multi-scale input/Multi-head Axial-Self-Attention/Swin Transformer

分类

信息技术与安全科学

引用本文复制引用

李芳芳,束建华,阚峻岭,殷云霞,孙大勇,马春..基于SPD多尺度输入的ST-MASA的肺炎智能检测模型[J].宿州学院学报,2023,38(12):11-17,7.

基金项目

安徽省高等学校自然科学重点研究项目(2022AH050475 ()

KJ2020A0394) ()

安徽中医药大学自然科学重点研究项目(2020zrzd20 ()

2020zrzd19 ()

2020zrzd17 ()

2021zrzd12) ()

安徽省省级教学研究项目(2020jyxm1018 ()

2020jyxm1020). ()

宿州学院学报

1673-2006

访问量0
|
下载量0
段落导航相关论文